Gaussian process $f$ — random function with jointly Gaussian marginals.
Characterized by
Notation: $f \~ \f{GP}(m, k)$.
The kernel $k$ must be positive (semi-)definite (non-trivial requirement).
Takes
giving the posterior (conditional) Gaussian process $\f{GP}(\hat{m}, \hat{k})$.
The functions $\hat{m}$ and $\hat{k}$ may be explicitly expressed in terms of $m$ and $k$.
$$
\htmlData{class=fragment fade-out,fragment-index=6}{
\footnotesize
\mathclap{
k_{\nu, \kappa, \sigma^2}(x,x') = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \del{\sqrt{2\nu} \frac{\abs{x-x'}}{\kappa}}^\nu K_\nu \del{\sqrt{2\nu} \frac{\abs{x-x'}}{\kappa}}
}
}
\htmlData{class=fragment d-print-none,fragment-index=6}{
\footnotesize
\mathclap{
k_{\infty, \kappa, \sigma^2}(x,x') = \sigma^2 \exp\del{-\frac{\abs{x-x'}^2}{2\kappa^2}}
}
}
$$
$\sigma^2$: variance
$\kappa$: length scale
$\nu$: smoothness
$\nu\to\infty$: RBF kernel (Gaussian, Heat, Diffusion)
$\nu = 1/2$
$\nu = 3/2$
$\nu = 5/2$
$\nu = \infty$
Be able to: evaluate $k(x, x')$, differentiate it, sample $\mathrm{GP}(0, k)$.
$$ k_{\infty, \kappa, \sigma^2}(x,x') = \sigma^2\exp\del{-\frac{|x - x'|^2}{2\kappa^2}} $$
$$ k_{\infty, \kappa, \sigma^2}^{(d)}(x,x') = \sigma^2\exp\del{-\frac{d(x,x')^2}{2\kappa^2}} $$
Manifolds: not PSD for some $\kappa$ (in some cases—for all) unless the manifold is isometric to $\mathbb{R}^d$.
Feragen et al. (CVPR 2015) and Da Costa et al. (SIMODS 2025).
Graph nodes: not PSD for some $\kappa$ unless can be isometrically embedded into a Hilbert space.
Schoenberg (Trans. Am. Math. Soc. 1938).
$$ \htmlData{class=fragment,fragment-index=0}{ \underset{\t{Matérn}}{\undergroup{\del{\frac{2\nu}{\kappa^2} - \Delta}^{\frac{\nu}{2}+\frac{d}{4}} f = \c{W}}} } $$ $\Delta$: Laplacian $\c{W}$: Gaussian white noise $d$: dimension
Examples: $\bb{S}_d$, $\bb{T}^d$
The solution is a Gaussian process with kernel $$ \htmlData{fragment-index=2,class=fragment}{ k_{\nu, \kappa, \sigma^2}(x,x') = \frac{\sigma^2}{C_{\nu, \kappa}} \sum_{n=0}^\infty \Phi_{\nu, \kappa}(\lambda_n) f_n(x) f_n(x') } $$
Discretize the Problem
— works for general manifolds of very low dimension,
— see «Matérn Gaussian processes on Riemannian manifolds», NeurIPS 2020.
Use Algebraic Structure
— works for homogenous spaces (e.g. $\mathbb{S}_d$ or $\mathrm{SO}(n)$) of higher dimension,
— see «Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces I», (JMLR 2024) .
Circle
(Lie group)
Sphere
(homogeneous space)
Dragon
(general manifold)
Sphere $\mathbb{S}_2$
Torus $\mathbb{T}^2 = \bb{S}_1 \x \bb{S}_1$
Projective plane $\mathrm{RP}^2$
Let $\mathcal{P}$ denote the heat kernel, the fundamental solution of $ \frac{\partial u}{\partial t} = \Delta_x u . $
Then, on $\mathbb{R}^d$: $$ \begin{aligned} \htmlData{fragment-index=3,class=fragment}{ k_{\infty, \kappa, \sigma^2}(x, x') } & \htmlData{fragment-index=3,class=fragment}{ \propto \mathcal{P}(\kappa^2/2, x, x'), } \\ \htmlData{fragment-index=4,class=fragment}{ k_{\nu, \kappa, \sigma^2}(x, x') } & \htmlData{fragment-index=4,class=fragment}{ \propto \sigma^2 \int_{0}^{\infty} t^{\nu-1+d/2}e^{-\frac{2 \nu}{\kappa^2} t} \mathcal{P}(t, x, x') \mathrm{d} t } \end{aligned} $$
Alternative generalization: use the above as the definition.
☺ Always positive semi-definite + Interpretable inductive bias.
☺ Usually equivalent to SPDE-based with no SPDE machinery.
☹ Implicit, requires solving the equation.
Examples: $\bb{H}_d$, $\mathrm{SPD}(d)$
For symmetric spaces like $\bb{H}_d$, $\mathrm{SPD}(d)$ harmonic analysis generalizes well.
This allows to generalize random Fourier features to this setting.
— a few technical challenges arise though.
— see «Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces II», (JMLR 2024).
Hyperbolic space $\bb{H}_2$
Space of positive definite matrices $\f{SPD}(2)$
Hyperbolic space $\bb{H}_2$
Space of positive definite matrices $\f{SPD}(2)$
Geometry-aware vs Euclidean
SPDE turns into a stochastic linear system. The solution has kernel $$ \htmlData{fragment-index=2,class=fragment}{ k_{\nu, \kappa, \sigma^2}(i, j) = \frac{\sigma^2}{C_{\nu, \kappa}} \sum_{n=0}^{\abs{V}-1} \Phi_{\nu, \kappa}(\lambda_n) \mathbf{f_n}(i)\mathbf{f_n}(j) } $$
Consider the set of all unweighted graphs with $n$ nodes.
It is finite!
How to give it a geometric structure?
Make it into a space?
Beyond functions of actual graphs $f\big(\smash{\includegraphics[height=2.5em,width=1.0em]{figures/gg2.svg}}\big)$, it is useful to consider functions of equivalence classes of graphs: $f\big(\big\{\smash{\includegraphics[height=2.5em,width=1.0em]{figures/gg2.svg}}, \smash{\includegraphics[height=2.5em,width=1.0em]{figures/gg3.svg}}, \smash{\includegraphics[height=2.5em,width=1.0em]{figures/gg4.svg}}\big\}\big)$.
Borovitskiy et al. (AISTATS 2020)
Azangulov et al. (JMLR 2024)
Azangulov et al. (JMLR 2024)
Robert-Nicoud et al. (AISTATS 2024)
Yang et al. (AISTATS 2024)
Bolin et al. (Bernoulli 2024)
Alain et al. (ICML 2024)
Borovitskiy et al. (AISTATS 2023)
Fichera et al. (NeurIPS 2023)
Peach et al. (ICLR 2024)