UoE Statistics Seminar

Geometric Gaussian Processes

Viacheslav (Slava) Borovitskiy

Gaussian Processes

Gaussian process $f$ — random function with jointly Gaussian marginals.

Characterized by

  • a mean function $m(x) = \E(f(x))$,
  • a kernel (covariance) function $k(x, x') = \Cov(f(x), f(x'))$.

Notation: $f \~ \f{GP}(m, k)$.

The kernel $k$ must be positive (semi-)definite (non-trivial requirement).

Gaussian Process Regression

Takes

  • data $(x_1, y_1), .., (x_n, y_n) \in X \x \R$,
  • and a prior Gaussian Process $\f{GP}(m, k)$

giving the posterior (conditional) Gaussian process $\f{GP}(\hat{m}, \hat{k})$.

The functions $\hat{m}$ and $\hat{k}$ may be explicitly expressed in terms of $m$ and $k$.

Standard Priors

Matérn Gaussian Processes

$$ \htmlData{class=fragment fade-out,fragment-index=6}{ \footnotesize \mathclap{ k_{\nu, \kappa, \sigma^2}(x,x') = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \del{\sqrt{2\nu} \frac{\abs{x-x'}}{\kappa}}^\nu K_\nu \del{\sqrt{2\nu} \frac{\abs{x-x'}}{\kappa}} } } \htmlData{class=fragment d-print-none,fragment-index=6}{ \footnotesize \mathclap{ k_{\infty, \kappa, \sigma^2}(x,x') = \sigma^2 \exp\del{-\frac{\abs{x-x'}^2}{2\kappa^2}} } } $$ $\sigma^2$: variance $\kappa$: length scale $\nu$: smoothness
$\nu\to\infty$: RBF kernel (Gaussian, Heat, Diffusion)

$\nu = 1/2$

$\nu = 3/2$

$\nu = 5/2$

$\nu = \infty$

This talk: "Nice" priors on non-Euclidean domains

Be able to:     evaluate $k(x, x')$,     differentiate it,      sample $\mathrm{GP}(0, k)$.

Non-Euclidean Domains

Manifolds
e.g. in physics (robotics)

Graphs
e.g. for road networks

Spaces of graphs
e.g. for drug design

Distance-based Approach

$$ k_{\infty, \kappa, \sigma^2}(x,x') = \sigma^2\exp\del{-\frac{|x - x'|^2}{2\kappa^2}} $$

$$ k_{\infty, \kappa, \sigma^2}^{(d)}(x,x') = \sigma^2\exp\del{-\frac{d(x,x')^2}{2\kappa^2}} $$

Manifolds: not PSD for some $\kappa$ (in some cases—for all) unless the manifold is isometric to $\mathbb{R}^d$.

Feragen et al. (CVPR 2015) and Da Costa et al. (SIMODS 2025).

Graph nodes: not PSD for some $\kappa$ unless can be isometrically embedded into a Hilbert space.

Schoenberg (Trans. Am. Math. Soc. 1938).

Not PSD on the square graph.

Not PSD on the circle manifold.

Another Approach: Stochastic Partial Differential Equations

$$ \htmlData{class=fragment,fragment-index=0}{ \underset{\t{Matérn}}{\undergroup{\del{\frac{2\nu}{\kappa^2} - \Delta}^{\frac{\nu}{2}+\frac{d}{4}} f = \c{W}}} } $$ $\Delta$: Laplacian $\c{W}$: Gaussian white noise $d$: dimension

Generalizes well

Geometry-aware: respects to symmetries of the space

Implicit: no formula for the kernel

Whittle (1963)
Lindgren et al. (2011)

Making It Explicit:
Compact Manifolds



Examples: $\bb{S}_d$, $\bb{T}^d$

Solution for Compact Riemannian Manifolds

The solution is a Gaussian process with kernel $$ \htmlData{fragment-index=2,class=fragment}{ k_{\nu, \kappa, \sigma^2}(x,x') = \frac{\sigma^2}{C_{\nu, \kappa}} \sum_{n=0}^\infty \Phi_{\nu, \kappa}(\lambda_n) f_n(x) f_n(x') } $$

$\lambda_n, f_n$: eigenvalues and eigenfunctions of the Laplace–Beltrami operator

$$ \htmlData{fragment-index=4,class=fragment}{ \Phi_{\nu, \kappa}(\lambda) = \begin{cases} \htmlData{fragment-index=5,class=fragment}{ \del{\frac{2\nu}{\kappa^2} - \lambda}^{-\nu-\frac{d}{2}} } & \htmlData{fragment-index=5,class=fragment}{ \nu < \infty \text{ --- Matérn} } \\ \htmlData{fragment-index=6,class=fragment}{ e^{-\frac{\kappa^2}{2} \lambda} } & \htmlData{fragment-index=6,class=fragment}{ \nu = \infty \text{ --- Heat (RBF)} } \end{cases} } $$

See «Matérn Gaussian processes on Riemannian manifolds» — NeurIPS 2020

How to get $\lambda_n, f_n$?

How to get $\lambda_n, f_n$?

Discretize the Problem

— works for general manifolds of very low dimension,

— see «Matérn Gaussian processes on Riemannian manifolds», NeurIPS 2020.

Use Algebraic Structure

— works for homogenous spaces (e.g. $\mathbb{S}_d$ or $\mathrm{SO}(n)$) of higher dimension,

— see «Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces I», (JMLR 2024) .

Examples: The Values of $k_{1/2}(\htmlStyle{color:rgb(255, 19, 0)!important}{\bullet},\.)$ on Compact Riemannian Manifolds

Circle
(Lie group)

Sphere
(homogeneous space)

Dragon
(general manifold)

Examples: Samples from $\mathrm{GP}(0, k_{\infty})$ on Compact Homgeneous Spaces

Sphere $\mathbb{S}_2$
Torus $\mathbb{T}^2 = \bb{S}_1 \x \bb{S}_1$
Projective plane $\mathrm{RP}^2$

Driven by generalized random phase Fourier features (GRPFF).

Alternative Generalization

Alternative Generalization of the RBF Kernel

Let $\mathcal{P}$ denote the heat kernel, the fundamental solution of $ \frac{\partial u}{\partial t} = \Delta_x u . $

Then, on $\mathbb{R}^d$: $$ \begin{aligned} \htmlData{fragment-index=3,class=fragment}{ k_{\infty, \kappa, \sigma^2}(x, x') } & \htmlData{fragment-index=3,class=fragment}{ \propto \mathcal{P}(\kappa^2/2, x, x'), } \\ \htmlData{fragment-index=4,class=fragment}{ k_{\nu, \kappa, \sigma^2}(x, x') } & \htmlData{fragment-index=4,class=fragment}{ \propto \sigma^2 \int_{0}^{\infty} t^{\nu-1+d/2}e^{-\frac{2 \nu}{\kappa^2} t} \mathcal{P}(t, x, x') \mathrm{d} t } \end{aligned} $$

Alternative generalization: use the above as the definition.

Always positive semi-definite + Interpretable inductive bias.

Usually equivalent to SPDE-based with no SPDE machinery.

Implicit, requires solving the equation.

Making It Explicit:
Non-compact Manifolds



Examples: $\bb{H}_d$, $\mathrm{SPD}(d)$

The Basic Idea

For symmetric spaces like $\bb{H}_d$,  $\mathrm{SPD}(d)$ harmonic analysis generalizes well.

This allows to generalize random Fourier features to this setting.

— a few technical challenges arise though.

— see «Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces II», (JMLR 2024).

Examples: The Values of $k_{\infty}(\htmlStyle{color:rgb(0, 0, 0)!important}{\bullet},\.)$ on Non-compact Manifolds

Hyperbolic space $\bb{H}_2$

Space of positive definite matrices $\f{SPD}(2)$

See «Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces II»

Examples: Samples from $\mathrm{GP}(0, k_{\infty})$ on Non-compact Homgeneous Spaces

Hyperbolic space $\bb{H}_2$

Space of positive definite matrices $\f{SPD}(2)$

See «Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces II»

Example Application

Application: Wind Speed Modeling (Vector Fields on Manifolds)

Geometry-aware vs Euclidean

See «Vector-valued Gaussian Processes on Riemannian Manifolds
via Gauge Independent Projected Kernels» — NeurIPS 2021

Making It Explicit:
Node Sets of Graphs

Matérn Kernels on Weighted Undirected Graphs

SPDE turns into a stochastic linear system. The solution has kernel $$ \htmlData{fragment-index=2,class=fragment}{ k_{\nu, \kappa, \sigma^2}(i, j) = \frac{\sigma^2}{C_{\nu, \kappa}} \sum_{n=0}^{\abs{V}-1} \Phi_{\nu, \kappa}(\lambda_n) \mathbf{f_n}(i)\mathbf{f_n}(j) } $$

$\lambda_n, \mathbf{f_n}$: eigenvalues and eigenvectors of the Laplacian matrix

$$ \htmlData{fragment-index=4,class=fragment}{ \Phi_{\nu, \kappa}(\lambda) = \begin{cases} \htmlData{fragment-index=5,class=fragment}{ \del{\frac{2\nu}{\kappa^2} - \lambda}^{-\nu} } & \htmlData{fragment-index=5,class=fragment}{ \nu < \infty \text{ --- Matérn} } \\ \htmlData{fragment-index=6,class=fragment}{ e^{-\frac{\kappa^2}{2} \lambda} } & \htmlData{fragment-index=6,class=fragment}{ \nu = \infty \text{ --- Heat (RBF)} } \end{cases} } $$

«Matérn Gaussian Processes on Graphs» — AISTATS 2021

Example Application

Making It Explicit:
Spaces of Graphs

Spaces of Graphs

Consider the set of all unweighted graphs with $n$ nodes. It is finite!
How to give it a geometric structure? Make it into a space?

Graphs define geometry of discrete sets. We make it into a node set of a graph!

Space of graphs with $n = 3$ nodes
as the $3$-dimensional cube

See «Isotropic Gaussian Processes on Finite Spaces of Graphs» — AISTATS 2023

Spaces of Graphs

Beyond functions of actual graphs $f\big(\smash{\includegraphics[height=2.5em,width=1.0em]{figures/gg2.svg}}\big)$, it is useful to consider functions of equivalence classes of graphs: $f\big(\big\{\smash{\includegraphics[height=2.5em,width=1.0em]{figures/gg2.svg}}, \smash{\includegraphics[height=2.5em,width=1.0em]{figures/gg3.svg}}, \smash{\includegraphics[height=2.5em,width=1.0em]{figures/gg4.svg}}\big\}\big)$.

Space of equivalence classes for $n=4$
as the quotient graph of the $4$-d cube

See «Isotropic Gaussian Processes on Finite Spaces of Graphs» — AISTATS 2023

Spaces of Graphs

Space of graphs with $n = 3$ nodes
as the $3$-dimensional cube

Space of equivalence classes for $n=4$
as the quotient graph of the $4$-d cube

See «Isotropic Gaussian Processes on Finite Spaces of Graphs» — AISTATS 2023

Spaces of Graphs

Space of graphs with $n = 3$ nodes
as the $3$-dimensional cube

Space of equivalence classes for $n=4$
as the quotient graph of the $4$-d cube

See «Isotropic Gaussian Processes on Finite Spaces of Graphs» — AISTATS 2023

Conclusion

Gaussian processes:

various geometric settings

Gaussian processes:

 various geometric settings

Simple manifolds:
meshes, spheres, tori

Borovitskiy et al. (AISTATS 2020)

Compact Lie groups and
homogeneous spaces:
$\small\f{SO}(n)$, resp. $\small\f{Gr}(n, r)$

Azangulov et al. (JMLR 2024)

Non-compact symmetric
spaces: $\small\bb{H}_n$ and $\small\f{SPD}(n)$

Azangulov et al. (JMLR 2024)

Gaussian processes: various geometric settings

Vector fields on simple manifolds

Robert-Nicoud et al. (AISTATS 2024)

Gaussian processes: various geometric settings

Edges of graphs

Yang et al. (AISTATS 2024)

Metric graphs

Bolin et al. (Bernoulli 2024)

Cellular Complexes

Alain et al. (ICML 2024)

Spaces of Graphs

Borovitskiy et al. (AISTATS 2023)

Implicit geometry

Semi-supervised learning:
scalar functions

Fichera et al. (NeurIPS 2023)

Semi-supervised learning:
vector fields

Peach et al. (ICLR 2024)

Implementation

Together with

Alexander
Terenin

Peter
Mostowsky

Iskander
Azangulov

Andrei
Smolensky

Mohammad Reza
Karimi

Vignesh Ram
Somnath

Noémie
Jaquier

Michael
Hutchinson

So
Takao

Leonel
Rozo

As well as Andreas Krause, Marc Deisenroth, Nicolas Durrande, Yee Why Teh, Tamim Asfour.
And more!

Thank you!

Thank you!

Slides:
viacheslav.borovitskiy@gmail.com                       https://vab.im