Talk at IST Austria
Geometric
Gaussian Processes
Viacheslav Borovitskiy (Slava)

Definition. A Gaussian process is random function f on a set X such that for any x1,..,xn∈X, the vector f(x1),..,f(xn) is multivariate Gaussian.
May refer to a random function / distribution, depending on the context.
Gaussian processes are characterized by
Notation: f∼GP(m,k).
The kernel k must be positive (semi-)definite.
Takes
giving the posterior (conditional) Gaussian process GP(m^,k^).
The functions m^ and k^ may be explicitly expressed in terms of m and k.
x0x1=x0+f(x0)Δtx2=x1+f(x1)Δt..
x0x1=x0+f(x0)Δtx2=x1+f(x1)Δt..
assume f unknown, model f as a GP.
x0x1=x0+f(x0)Δtx2=x1+f(x1)Δt..
Be able to: evaluate k(x,x′), differentiate it, sample GP(0,k).
kν,κ,σ2(x,x′)=σ2Γ(ν)21−ν(2νκ∣x−x′∣)νKν(2νκ∣x−x′∣)k∞,κ,σ2(x,x′)=σ2exp(−2κ2∣x−x′∣2)
σ2: variance
κ: length scale
ν: smoothness
ν→∞: RBF kernel (Gaussian, Heat, Diffusion)
ν=1/2
ν=3/2
ν=5/2
ν=∞
k∞,κ,σ2(x,x′)=σ2exp(−2κ2∣x−x′∣2)
k∞,κ,σ2(d)(x,x′)=σ2exp(−2κ2d(x,x′)2)
For manifolds. Not well-defined unless the manifold is isometric to a Euclidean space.
(Feragen et al. 2015)
For graphs. Not well-defined unless nodes can be isometrically embedded into a Hilbert space.
(Schonberg, 1930s)
For spaces of graphs. What is a space of graphs?!
Mateˊrn(κ22ν−Δ)2ν+4df=W Δ: Laplacian W: Gaussian white noise d: dimension
Examples: Sd, Td
The solution is a Gaussian process with kernel kν,κ,σ2(x,x′)=Cν,κσ2n=0∑∞Φν,κ(λn)fn(x)fn(x′)
Mesh the manifold, consider the discretized Laplace–Beltrami (a matrix).
For manifolds with rich group of symmetries, termed homogeneous spaces.
These include
λn,fn are connected to representation theory of the group of symmetries.
Circle
(Lie group)
Sphere
(homogeneous space)
Dragon
(general manifold)
Examples: Hd, SPD(d)
Take stationary k. Assume for simplicity k(x,x)=1. Then
k(x,x′)=∫RdS(λ)e2πi⟨x−x′,λ⟩dλ≈L1l=1∑Le2πi⟨x−x′,λl⟩λl∼S(λ)k is RBF ⟹ S(λ) is Gaussian. k is Matérn ⟹ S(λ) is t distributed.
k is RBF ⟹ S(λ) is Gaussian. k is Matérn ⟹ S(λ) is t distributed.
• π(λ) is an explicit integral.
• c(λ) has closed form.
• c(λ)−2S(λ) is a non-standard, potentially unnormalized, density.
Space of positive definite matrices SPD(2)
Since e2πi⟨x−x′,λl⟩=e2πi⟨x,λl⟩e2πi⟨x′,λl⟩, the above is an inner product.
f(x)≈L1l=1∑Lwle2πi⟨x,λl⟩wl∼N(0,1)λl∼S(λ)
Since e2πi⟨x−x′,λl⟩π(λl)(x,x′)=e2πi⟨x,λl⟩e2πi⟨x′,λl⟩π(λl)(x,?)π(λl)(x′,?), the above is an inner product. e2πi⟨x−x′,λl⟩π(λl)(x,x′)=e2πi⟨x,λl⟩e2πi⟨x′,λl⟩π(λl)(x,?)π(λl)(x′,?)π(λl)(x,x′)=π(λl)(x,?)π(λl)(x′,?), e2πi⟨x−x′,λl⟩π(λl)(x,x′)=e2πi⟨x,λl⟩e2πi⟨x′,λl⟩π(λl)(x,?)π(λl)(x′,?)π(λl)(x,x′)=Eh∼μHe⟨iλ+ρ,a(h,x)⟩e⟨iλ+ρ,a(h,x′)⟩, where
f(x)≈L1l=1∑Lwle2πi⟨x,λl⟩wl∼N(0,1)λl∼S(λ)
• the vector ρ and the function a(⋅,⋅) are known,
• μH is samplabale.
• Monte Carlo approximation of the expectation Eh∼μH is an inner product.
Space of positive definite matrices SPD(2)
SPDE turns into a stochastic linear system. The solution has kernel kν,κ,σ2(i,j)=Cν,κσ2n=0∑∣V∣−1Φν,κ(λn)fn(i)fn(j)
Consider the set of all unweighted graphs with n nodes.
It is finite!
How to give it a geometric structure?
Make it into a space?
Beyond functions of actual graphs f(),
it is useful to consider functions of equivalence classes of graphs: f({
,
,
}).
k(x,y)=Cν,κσ2n=0∑∞Φν,κ(λn)fn(x)fn(y)fn(y)spherical harmonics=Cν,κσ2n=0∑∞Φν,κ(λn)(k=1∑dnfn,k(x)fn,k(y))Cn,d⋅ϕn,d(x,y) — zonal spherical harmonics(k=1∑dnfn,k(x)fn,k(y))
The last equation
Circle
(Lie group)
Sphere
(homogeneous space)
Dragon
(general manifold)
Zonal spherical harmonics satisfy reproducing property:
ϕn,d(x,y)=Cn,d∫Snϕn,d(x,u)ϕn,d(y,u)du≈LCn,dl=1∑Lϕn,d(x,ul)ϕn,d(y,ul),ul∼i.i.d.U(Sn).Hence Cn,d/L⋅ϕn,d(x,u) forms an approximate feature transform.
This enables efficient sampling without knowing fn. And this generalizes!