NeurIPS Workshop on Gaussian Processes, Spatiotemporal Modeling, and Decision-making Systems

Geometry-aware 

Gaussian Processes

Viacheslav Borovitskiy (Slava)

Consider a simple dynamical system: a pendulum

$$ \htmlData{fragment-index=0,class=fragment}{ x_0 } \qquad \htmlData{fragment-index=1,class=fragment}{ x_1 = x_0 + f(x_0)\Delta t } \qquad \htmlData{fragment-index=2,class=fragment}{ x_2 = x_1 + f(x_1)\Delta t } \qquad \htmlData{fragment-index=3,class=fragment}{ .. } $$

Consider a Simple Dynamical System: a Pendulum

$$ x_0 \qquad x_1 = x_0 + f(x_0)\Delta t \qquad x_2 = x_1 + f(x_1)\Delta t \qquad .. $$

Consider a Simple Dynamical System: a Pendulum

$$f: \R \x \R \to \R \x \R$$

assume $f$ unknown, model $f$ as a GP.

$$ x_0 \qquad x_1 = x_0 + f(x_0)\Delta t \qquad x_2 = x_1 + f(x_1)\Delta t \qquad .. $$

Pendulum Dynamics: Phase Portrait

Pendulum Dynamics: Phase Portrait

Phase portrait is periodic!

Pendulum Dynamics: Phase Portrait

This means that state space is actually a cylinder!

Pendulum Dynamics: Phase Portrait

Phase portrait is periodic!

I.e. the state space is actually a cylinder!

Need priors on non-Euclidean domains!

And they have to be geometry-aware.

Non-Euclidean Domains

Manifolds
e.g. in physics (robotics)

Graphs
e.g. for road networks

Spaces of graphs
e.g. for drug design

Standard Priors

Matérn Gaussian Processes

$$ \htmlData{class=fragment fade-out,fragment-index=6}{ \footnotesize \mathclap{ k_{\nu, \kappa, \sigma^2}(x,x') = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \del{\sqrt{2\nu} \frac{\abs{x-x'}}{\kappa}}^\nu K_\nu \del{\sqrt{2\nu} \frac{\abs{x-x'}}{\kappa}} } } \htmlData{class=fragment d-print-none,fragment-index=6}{ \footnotesize \mathclap{ k_{\infty, \kappa, \sigma^2}(x,x') = \sigma^2 \exp\del{-\frac{\abs{x-x'}^2}{2\kappa^2}} } } $$ $\sigma^2$: variance $\kappa$: length scale $\nu$: smoothness
$\nu\to\infty$: RBF kernel (Gaussian, Heat, Diffusion)

$\nu = 1/2$

$\nu = 3/2$

$\nu = 5/2$

$\nu = \infty$

How to generalize these
to non-Euclidean settings?

Distance-based Approach

$$ k_{\infty, \kappa, \sigma^2}(x,x') = \sigma^2\exp\del{-\frac{|x - x'|^2}{2\kappa^2}} $$

$$ k_{\infty, \kappa, \sigma^2}^{(d)}(x,x') = \sigma^2\exp\del{-\frac{d(x,x')^2}{2\kappa^2}} $$

It is geometry-aware, but...

For manifolds. Not well-defined unless the manifold is isometric to a Euclidean space.
(Feragen et al. 2015)

For graphs. Not well-defined unless nodes can be isometrically embedded into a Hilbert space.
(Schonberg, 1930s)

For spaces of graphs. What is a space of graphs?!

Need a different generalization

Another Approach: Stochastic Partial Differential Equations

$$ \htmlData{class=fragment,fragment-index=0}{ \underset{\t{Matérn}}{\undergroup{\del{\frac{2\nu}{\kappa^2} - \Delta}^{\frac{\nu}{2}+\frac{d}{4}} f = \c{W}}} } $$ $\Delta$: Laplacian $\c{W}$: Gaussian white noise $d$: dimension

Generalizes well

Geometry-aware: invariant to symmetries of the space

Implicit: no formula for the kernel

Whittle (1963)
Lindgren et al. (2011)

Making it explicit:
Continuous case (manifolds)

Solution for Compact Riemannian Manifolds

The solution is a Gaussian process with kernel $$ \htmlData{fragment-index=2,class=fragment}{ k_{\nu, \kappa, \sigma^2}(x,x') = \frac{\sigma^2}{C_{\nu, \kappa}} \sum_{n=0}^\infty \del{\frac{2\nu}{\kappa^2} - \lambda_n}^{-\nu-\frac{d}{2}} f_n(x) f_n(x') } $$

$\lambda_n, f_n$: eigenvalues and eigenfunctions of the Laplace–Beltrami operator

See «Matérn Gaussian processes on Riemannian manifolds» — NeurIPS 2020

How to get $\lambda_n, f_n$?

Answer I: Discretize the Problem

Mesh the manifold, consider the discretized Laplace–Beltrami (a matrix).

See «Matérn Gaussian processes on Riemannian manifolds» — NeurIPS 2020

Answer II: Use Algebraic Structure

For manifolds with rich group of symmetries, termed homogeneous spaces.

These includes

  • Lie groups, like rotations $\mathrm{SO}(n)$ and unitary matrices $\mathrm{SU}(n)$,
  • «Proper» homogeneous spaces, e.g. spheres $\mathbb{S}_n$, hyperbolic spaces $\mathbb{H}_n$.

$\lambda_n, f_n$ are connected to representation theory of the group of symmetries.

See «Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces» — Preprint 2022

Riemannian Matérn kernels: Samples

Sphere $\mathbb{S}_2$
Torus $\mathbb{S} \x \mathbb{S}$
Projective plane $\mathrm{RP}^2$

Samples from $\mathrm{GP}(0, k_{\infty})$

Driven by Generalized Random Phase Fourier Features (GRPFF)

See «Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces» — Preprint 2022

Applications: Bayesian Optimization in Robotics

Joint postures: $\mathbb{T}^d$

Rotations: $\mathbb{S}_3$, $\operatorname{SO}(3)$

Manipulability: $\operatorname{SPD(3)}$

See «Geometry-aware Bayesian Optimization in Robotics using Riemannian Matérn Kernels» — CoRL 2021

Application: Wind Speed Modeling (Vector Fields on Manifolds)

Geometry-aware vs Euclidean

See «Vector-valued Gaussian Processes on Riemannian Manifolds
via Gauge Independent Projected Kernels» — NeurIPS 2021

Making it explicit:
Discrete case (graphs)

Matérn Kernels: Finite Undirected Graphs

The solution is a Gaussian process with kernel $$ \htmlData{fragment-index=2,class=fragment}{ k_{\nu, \kappa, \sigma^2}(i, j) = \frac{\sigma^2}{C_{\nu, \kappa}} \sum_{n=0}^{\abs{V}-1} \del{\frac{2\nu}{\kappa^2} + \mathbf{\lambda_n}}^{-\nu} \mathbf{f_n}(i)\mathbf{f_n}(j) } $$

$\lambda_n, \mathbf{f_n}$: eigenvalues and eigenvectors of the Laplacian matrix

«Matérn Gaussian Processes on Graphs» — AISTATS 2021

Traffic Speed Extrapolation on a Road Network

(a) Prediction

(b) Standard Deviation

«Matérn Gaussian Processes on Graphs» — AISTATS 2021

Making it explicit:
Discrete case (spaces of graphs)

Spaces of Graphs

Consider the set of all unweighted graphs with $n$ nodes. It is finite!
How to give it a geometric structure? Make it into a space?

Graphs define geometry of discrete sets. We make it into a node set of a graph!

Space of graphs with $n = 3$ nodes
as the $3$-dimensional cube

See «Isotropic Gaussian Processes on Finite Spaces of Graphs» — preprint 2022

Spaces of Graphs

Beyond functions of actual graphs ($f\big(\smash{\includegraphics[height=2.5em,width=1.0em]{figures/gg2.svg}}\big)$), it is useful to consider equivalence classes of graphs: $f\big(\big\{\smash{\includegraphics[height=2.5em,width=1.0em]{figures/gg2.svg}}, \smash{\includegraphics[height=2.5em,width=1.0em]{figures/gg3.svg}}, \smash{\includegraphics[height=2.5em,width=1.0em]{figures/gg4.svg}}\big\}\big)$.

Space of equivalence classes for $n=4$
as the quotient graph of the $4$-d cube

See «Isotropic Gaussian Processes on Finite Spaces of Graphs» — preprint 2022

Spaces of Graphs

Space of graphs with $n = 3$ nodes
as the $3$-dimensional cube

Space of equivalence classes for $n=4$
as the quotient graph of the $4$-d cube

See «Isotropic Gaussian Processes on Finite Spaces of Graphs» — preprint 2022

Spaces of Graphs

Space of graphs with $n = 3$ nodes
as the $3$-dimensional cube

Space of equivalence classes for $n=4$
as the quotient graph of the $4$-d cube

See «Isotropic Gaussian Processes on Finite Spaces of Graphs» — preprint 2022

Application: Drug Design

See «Isotropic Gaussian Processes on Finite Spaces of Graphs» — preprint 2022

Conclusion

Implementation

Final Words

There is a lot of exciting work to do — join!

For On-site Discussions

Alex Terenin

Thank you!

Thank you!

Slides:
viacheslav.borovitskiy@gmail.com                       https://vab.im