Non-linear regression and classification: $$ \htmlClass{fragment}{ \min_{f\in\c{F}} \sum_{i=1}^N L(y_i, f(x_i)) } $$ where
Spaces $X$ and/or $Y$ carry geometric structure
Probabilistic non-linear regression and classification: $$ \htmlClass{fragment}{ y_i \~ p_{y\given f}(\.\given f(x_i)) } $$ where
Most models can be formulated in both ways
Spaces $X$ and $Y$ carry geometric structure
$$ f : G \to \R $$
$$ f\Big(\smash{\includegraphics[height=2.75em,width=1.5em]{figures/part_1/g1.svg}}\Big) \to \R $$
$$ f\Big(\smash{\includegraphics[height=2.75em,width=1.5em]{figures/part_1/g2.svg}}\Big) \to \R $$
$$ f\Big(\smash{\includegraphics[height=2.75em,width=1.5em]{figures/part_1/g3.svg}}\Big) \to \R $$
Graph: $G = (V,E)$ where
Numerical representation:
Two ways of representing points on a sphere:
$ \large\x\, $
$ \large\x\, $
$ \large= $
Need models that respect representation's symmetries
$ \x\, $
$ \x\, $
$ = $
Design principle: models which respect the space's symmetries
..unless data indicates otherwise?
Just as relevant in classical Euclidean setting
Idea:
Other models:
Check out the recent book, available with slides and other content at https://geometricdeeplearning.com
San Jose highway network: graph with 1016 nodes
325 labeled nodes with known traffic speed in miles per hour
Use 250 labeled nodes for training data and 75 for test data
Dataset details: Borovitskiy et al. (AISTATS 2021)
This example: easy-to-use and visualize benchmark for regression on geometric data
Geometric Gaussian processes:
$$ \htmlData{class=fragment fade-out,fragment-index=6}{ \footnotesize \mathclap{ k_{\nu, \kappa, \sigma^2}(x,x') = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \del{\sqrt{2\nu} \frac{\abs{x-x'}}{\kappa}}^\nu K_\nu \del{\sqrt{2\nu} \frac{\abs{x-x'}}{\kappa}} } } \htmlData{class=fragment d-print-none,fragment-index=6}{ \footnotesize \mathclap{ k_{\infty, \kappa, \sigma^2}(x,x') = \sigma^2 \exp\del{-\frac{\abs{x-x'}^2}{2\kappa^2}} } } $$
$\nu = 1/2$
$\nu = 3/2$
$\nu = 5/2$
$\nu = \infty$
$$ k_{\infty, \kappa, \sigma^2}(x,x') = \sigma^2\exp\del{-\frac{|x - x'|^2}{2\kappa^2}} $$
$$ k_{\infty, \kappa, \sigma^2}^{(d)}(x,x') = \sigma^2\exp\del{-\frac{d(x,x')^2}{2\kappa^2}} $$
Geometry-aware, but...
Manifolds: not well-defined unless the manifold is isometric to a Euclidean space
Feragen et al. (CVPR 2015)
Graphs: not well-defined unless nodes can be isometrically embedded into a Hilbert space
Schoenberg (Trans. Am. Math. Soc. 1938)
Spaces of graphs: what is a space of graphs?
$$ \htmlData{class=fragment,fragment-index=0}{ \ubr{\del{\frac{2\nu}{\kappa^2} - \Delta}^{\frac{\nu}{2}+\frac{d}{4}} f = \c{W}}{\t{Matérn}} } $$
Whittle (ISI 1963)
Lindgren et al. (JRSSB 2011)
SPDE turns into a stochastic linear system: solution has kernel $$ \htmlData{fragment-index=2,class=fragment}{ k_{\nu, \kappa, \sigma^2}(i, j) = \frac{\sigma^2}{C_{\nu, \kappa}} \sum_{n=0}^{\abs{V}-1} \Phi_{\nu, \kappa}(\lambda_n) \v{f_n}(i)\v{f_n}(j) } $$
$$ \htmlData{fragment-index=4,class=fragment}{ \Phi_{\nu, \kappa}(\lambda) = \begin{cases} \htmlData{fragment-index=5,class=fragment}{ \del{\frac{2\nu}{\kappa^2} - \lambda}^{-\nu} } & \htmlData{fragment-index=5,class=fragment}{ \nu\lt\infty : \t{Matérn} } \\ \htmlData{fragment-index=6,class=fragment}{ e^{-\frac{\kappa^2}{2} \lambda} } & \htmlData{fragment-index=6,class=fragment}{ \nu = \infty : \t{heat (sq. exp., RBF)} } \end{cases} } $$
Compact manifolds: $$ \htmlData{class=fragment}{ \begin{aligned} k_{\nu, \kappa, \sigma^2}(x,x') &= \frac{\sigma^2}{C_{\nu, \kappa}} \sum_{n=0}^\infty \Phi_{\nu, \kappa}(\lambda_n) f_n(x) f_n(x') \\ &= \frac{\sigma^2}{C_{\nu, \kappa}} \sum_{l=0}^\infty \Phi_{\nu, \kappa}(\lambda_l) \underbrace{\sum_{s=1}^{d_s} f_{l, s}(x) f_{l, s}(x')}_{G_l(x, x')} \end{aligned} } $$
Infinite summation where $\lambda_n, f_n$ are Laplace–Beltrami eigenpairs
Addition theorems: more efficient $G_l(x, x')$-based expressions
Non-compact manifolds:
Spaces of graphs:
Borovitskiy et al. (AISTATS 2020)
Azangulov et al. (JMLR 2024)
Azangulov et al. (JMLR 2024)
Robert-Nicoud et al. (AISTATS 2024)
Yang et al. (AISTATS 2024)
Bolin et al. (Bernoulli 2024)
Alain et al. (ICML 2024)
Borovitskiy et al. (AISTATS 2023)
Fichera et al. (NeurIPS 2023)
Peach et al. (ICLR 2024)
Li et al. (JMLR 2024)
Rosa et al. (NeurIPS 2023)
Jaquier et al. (CoRL 2019, CoRL 2021), figures by the authors
Matérn Gaussian processes on meshes (independently proposed)
Coveney et al. (TBE 2019, PTRSA 2020), figures by the authors
Based on ensembles of geodesic CNNs
Neural Concept, video from neuralconcept.com
Example code:
>>> # Define a space (2-dim sphere).
>>> hypersphere = Hypersphere(dim=2)
>>> # Initialize kernel.
>>> kernel = MaternGeometricKernel(hypersphere)
>>> params = kernel.init_params()
>>> # Compute and print out the 3x3 kernel matrix.
>>> xs = np.array([[0., 0., 1.], [0., 1., 0.], [1., 0., 0.]])
>>> print(kernel.K(params, xs))
[[1. 0.356 0.356]
[0.356 1. 0.356]
[0.356 0.356 1. ]]
Multi-backend: Numpy, JAX, PyTorch, TensorFlow
PyTorch | JAX | TensorFlow | |
---|---|---|---|
Graph Neural Networks | PyTorch Geometric | Jraph | TensorFlow GNN |
Probabilistic Programming | Pyro | NumPyro | TensorFlow Probability |
Gaussian Processes | GPyTorch | GPJax | GPflow |
Geometric Kernels | GeometricKernels |
Geometric machine learning: increasingly popular
Geometric probabilistic models: emerging research area
Fully Funded PhD in ML @ the University of Edinburgh
Starting 2025. Follow/contact @vabor112.
M. M. Bronstein, J. Bruna, T. Cohen, and P. Veličković. Geometric deep learning: Grids, groups, graphs, geodesics, and gauges. Available at: https://geometricdeeplearning.com, 2021.
J. M. Stokes, K. Yang, K. Swanson, W. Jin, A. Cubillos-Ruiz, N. M. Donghia, C. R. MacNair, S. French, L. A. Carfrae, Z. Bloom-Ackermann, V. M. Tran, A. Chiappino-Pepe, A. H. Badran, I. W. Andrews, E. J. Chory, G. M. Church, E. D. Brown, T. S. Jaakkola, R. Barzilay, and J. J. Collins. A deep learning approach to antibiotic discovery. Cell, 2020.
J. Hao, T. Zhao, J. Li, X. L. Dong, C. Faloutsos, Y. Sun, and W. Wang. P-companion: A principled framework for diversified complementary product recommendation. Conference on Information and Knowledge Management, 2020.
A. Derrow-Pinion, J. She, D. Wong, O. Lange, T. Hester, L. Perez, M. Nunkesser, S. Lee, X. Guo, B. Wiltshire, P. W. Battaglia, V. Gupta, A. Li, Z. Xu, A. Sanchez-Gonzalez, Y. Li, and P. Veličković. ETA prediction with graph neural networks in Google Maps. Conference on Information and Knowledge Management, 2021.
Y. Zhang, S. Pal, M. Coates, and D. Ustebay. Bayesian graph convolutional neural networks for semi-supervised classification. AAAI Conference on Artificial Intelligence, 2019.
M. Stadler, B. Charpentier, S. Geisler, D. Zügner, and S. Günnemann. Graph posterior network: Bayesian predictive uncertainty for node classification. Advances in Neural Information Processing Systems, 2021.
H. Shi, X. Zhang, S. Sun, L. Liu, and L. Tang. A survey on Bayesian graph neural networks. Intelligent Human-Machine Systems and Cybernetics, 2021.
A. Hasanzadeh, E. Hajiramezanali, S. Boluki, M. Zhou, N. Duffield, K. Narayanan, and X. Qian. Bayesian graph neural networks with adaptive connection sampling. International Conference on Machine Learning, 2020.
N. Durasov, A. Lukoyanov, J. Donier, and P. Fua. DEBOSH: Deep bayesian shape optimization. Technical Report: Neural Concept, 2021.
Q. Wang, S. Wang, D. Zhuang, H. Koutsopoulos, and J. Zhao. Uncertainty quantification of spatiotemporal travel demand with probabilistic graph neural networks. IEEE Transactions on Intelligent Transportation Systems, 2024.
L. Kahle and F. Zipoli. Quality of uncertainty estimates from neural network potential ensembles. Physical Review E, 2022.
V. Borovitskiy, I. Azangulov, A. Terenin, P. Mostowsky, M. P. Deisenroth, and N. Durrande. Matérn Gaussian Processes on Graphs. Artificial Intelligence and Statistics, 2021.
A. Feragen, F. Lauze, and S. Hauberg. Geodesic exponential kernels: When curvature and linearity conflict. Computer Vision and Pattern Recognition, 2015.
I. J. Schoenberg. Metric spaces and positive definite functions. Transactions of the American Mathematical Society, 1938.
P. Whittle. Stochastic-processes in several dimensions. Bulletin of the International Statistical Institute, 1963.
F. Lindgren, H. Rue, and J. Lindström. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 2011.
V. Borovitskiy, A. Terenin, P. Mostowsky, and M. P. Deisenroth. Matérn Gaussian Processes on Riemannian Manifolds. Advances in Neural Information Processing Systems, 2020.
I. Azangulov, A. Smolensky, A. Terenin, and V. Borovitskiy. Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces I: the compact case. Journal of Machine Learning Research, 2024.
I. Azangulov, A. Smolensky, A. Terenin, and V. Borovitskiy. Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces II: non-compact symmetric spaces, 2024.
D. Robert-Nicoud, A. Krause, and V. Borovitskiy. Intrinsic Gaussian Vector Fields on Manifolds. Artificial Intelligence and Statistics, 2024.
M. Yang, V. Borovitskiy, and E. Isufi. Hodge-Compositional Edge Gaussian Processes. Artificial Intelligence and Statistics, 2024.
D. Bolin, A. B. Simas, and J. Wallin. Gaussian Whittle-Matérn fields on metric graphs. Bernoulli, 2024.
M. Alain, S. Takao, B. Paige, and M. P. Deisenroth. Gaussian Processes on Cellular Complexes. International Conference on Machine Learning, 2024.
V. Borovitskiy, M. R. Karimi, V. R. Somnath, and A. Krause. Isotropic Gaussian Processes on Finite Spaces of Graphs. Artificial Intelligence and Statistics, 2023.
B. Fichera, V. Borovitskiy, A. Krause, and A. Billard. Implicit Manifold Gaussian Process Regression. Advances in Neural Information Processing Systems, 2023.
R. Peach, M. Vinao-Carl, N. Grossman, and M. David. Implicit Gaussian process representation of vector fields over arbitrary latent manifolds. International Conference on Learning Representations, 2024.
D. Li, W. Tang, and S. Banerjee. Inference for Gaussian Processes with Matern Covariogram on Compact Riemannian Manifolds. Journal of Machine Learning Research, 2023.
P. Rosa, V. Borovitskiy, A. Terenin, and J. Rousseau. Posterior Contraction Rates for Matérn Gaussian Processes on Riemannian Manifolds. Advances in Neural Information Processing Systems, 2023.
N. Jaquier, V. Borovitskiy, A. Smolensky, A. Terenin, T. Asfour, and L. Rozo. Geometry-aware Bayesian Optimization in Robotics using Riemannian Matérn Kernels. Conference on Robot Learning, 2021.
N. Jaquier, L. Rozo, S. Calinon, and M. Bürger. Bayesian optimization meets Riemannian manifolds in robot learning. Conference on Robot Learning, 2020.
S. Coveney, C. Corrado, C. H. Roney, R. D. Wilkinson, J. E. Oakley, F. Lindgren, S. E. Williams, M. D. O'Neill, S. A. Niederer, and R. H. Clayton. Probabilistic interpolation of uncertain local activation times on human atrial manifolds. IEEE Transactions on Biomedical Engineering, 2019.
S. Coveney, C. Corrado, C. H. Roney, D. OHare, S. E. Williams, M. D. O'Neill, S. A. Niederer, R. H. Clayton, J. E. Oakley, and R. D. Wilkinson. Gaussian process manifold interpolation for probabilistic atrial activation maps and uncertain conduction velocity. Philosophical Transactions of the Royal Society A, 2020.