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Gaussian Process Regression



Gaussian Processes

Gaussian processes are function-valued Gaussian random variables.

Defn. Gaussian process (GP) is a family of random variables {f (x)}x∈X
such that every finite collection f (x1), .., f (xn) is jointly Gaussian.

The distribution of a Gaussian process is determined by

• a mean function m(x) = E(f (x)),

• a covariance function k(x , x ′) = Cov(f (x), f (x ′)).

Note: k is also called a kernel.

Notation: f ∼ GP(m, k).

k must be positive definite, i.e. for x = x1, .., xn with xi ∈ X the matrix

Kxx := {k(xi , xj)}1≤i≤n
1≤j≤n

must always be positive definite.
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Gaussian Process Regression

Gaussian Process Regression (GPR) is a regression method that takes in

• a prior Gaussian process distribution GP(m, k) for X → R functions,

• and data (x1, y1), .., (xn, yn) ∈ X × R.

It then yields a posterior (conditional) GP distribution GP(m̂, k̂) that

respects the data.

Instead of looking at the formulas, let us explore this visually!
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Visual guide to Gaussian process regression
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Applications

Also

• geostatistcs,

• robotics (dynamical systems modeling),

• more...
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Gaussian Process Priors



General Purpose Gaussian Process Priors

Assume we want to model a function Rd → R, which prior to take?

When we don’t know much about the function, we take GP(m, k) with

• m(x) = µ a constant mean function,

• k(x , x ′) = kν,κ,σ2 (x , x ′) the Matérn kernel.

Matérn kernels are defined by

kν,κ,σ2 (x , x ′) = σ2 21−ν

Γ(ν)

(√
2ν
‖x − x ′‖

κ

)ν
Kν

(√
2ν
‖x − x ′‖

κ

)
σ2: variance κ: length scale ν: smoothness

Kν — modified Bessel function of the 2nd kind.

In the limit ν →∞ we also get the famous Gaussian kernel:

k∞,κ,σ2 (x , x ′) = σ2 exp

(
−‖x − x ′‖2

2κ2

)
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Visual guide to Matérn kernels

(a) Matérn kernels as functions of ‖x − x ′‖; (b) GP sample paths
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Non-Euclidean Case



Generalizing these priors to a non-Euclidean setting

Consider substituting Riemannian geodesic distance dM(x , x ′) on some

manifold M instead of ‖x − x ′‖, e.g. the following kernel:

k∞,κ,σ2 (x , x ′) = σ2 exp

(
−dM(x , x ′)2

2κ2

)

This doesn’t work, the kernel may fail to be positive-definite:
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SPDE Definition of Matérn Gaussian Processes

By Whittle 63, if f ∼ GP(0, kν,κ,1), then it satisfies this particular SPDE:(
2ν

κ2
−∆

) ν
2 + d

4

f =W.

Here W is the Gaussian white noise, d is the dimension.

The fractional differential operator on the left is made precise through(
2ν

κ2
−∆

) ν
2 + d

4

f = F−1

(
2ν

κ2
+ |ζ|2

) ν
2 + d

4

· (F f )(ζ)

where F denotes the Fourier transform operator.

For compact Riemannian manifolds

1. ∆ — Laplace–Beltrami,

2. W — white noise controlled by

the Riemannian volume.

For weighted undirected graphs

1. ∆ — Laplacian matrix,

2. W — collection of i.i.d.

Gaussians, i.e. N(0, I ).

3.
(

2ν
κ2 −∆

) ν
2 + d

4 f =
∑

n≥0

(
2ν
κ2 + λn

) ν
2 + d

4 〈f , fn〉fn
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Solution of the SPDE

Represent the Gaussian white noise by

W =
∑
n≥0

wnfn, wn ∼ N(0, 1) (i.i.d.)

Then the SPDE can be rewritten in form

∑
n≥0

(
2ν

κ2
+ λn

) ν
2 + d

4

〈f , fn〉fn =
∑
n≥0

wnfn.

Hence

f =
∑
n≥0

〈f , fn〉fn =
∑
n≥0

(
2ν

κ2
+ λn

)− ν
2−

d
4

wnfn.

Finally

k(x , x ′) = Cov(f (x), f (x ′)) =
∑
n≥0

(
2ν

κ2
+ λn

)−ν−d/2

fn(x)fn(x ′).
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Matérn kernels on compact Riemannian manifolds

The kernel: kν,κ,σ2 (x , x ′) =
σ2

Cν

∞∑
n=0

(
2ν

κ2
+ λn

)−ν− d
2

fn(x)fn(x ′)

The process: f (x) =

√
σ2

Cν

∞∑
n=0

(
2ν

κ2
+ λn

)− ν
2−

d
4

wnfn(x).

λn, fn are Laplace–Beltrami eigenpairs.

In some cases (e.g. tori, spheres) — known analytically, in others (e.g.

the dragon manifold) may be approximated numerically.

Figure: values of Matérn kernel k1/2(x , ·). x is marked with a red dot.
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Matérn kernels on finite weighted undirected graphs

The kernel: kν,κ,σ2 (i , j) =
σ2

Cν

|V |−1∑
n=0

(
2ν

κ2
+ λn

)−ν
fn(i)fn(j)

The process: f (i) =

√
σ2

Cν

|V |−1∑
n=0

(
2ν

κ2
+ λn

)− ν
2

wnfn(i).

λn, fn are eigenpairs of the Laplacian matrix.

May be evaluated by SVD or an iterative (Lanczos type) algorithm.
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Figure: values of Matérn kernel k5/2(x , ·). x node has red outline.
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Applications



Pendulum Dynamics — GP on a Cylinder

(a) Ground truth (b) 95%-confidence
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Traffic speed interpolation — GP on a Road Network
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Conclusion



Summary

1. Euclidean general purpose GP priors may be generalized via the

SPDE definition, while the distance based approach does not work.

2. In compact Riemannian or finite graph settings, the SPDE may be

solved yielding tractable (approximate) kernels.

3. This enables GP based methods to be used in new applications.

15



* Equal contribution NeurIPS 2020

16

Matérn Gaussian processes on

Riemannian manifolds

Viacheslav*

Borovitskiy

Alexander*

Terenin

Peter*

Mostowsky

Marc

Deisenroth



* Equal contribution

17

Matérn Gaussian processes on graphs

Viacheslav*

Borovitskiy
Iskander*

Azangulov
Alexander*

Terenin
Peter

Mostowsky
Marc

Deisenroth
Nicolas

Durrande

Best Student Paper Award at AISTATS 2021



Thank you for your attention!
viacheslav.borovitskiy@gmail.com https://vab.im

Department of Mathematics

and Computer Science

Some figures were taken from: http://inverseprobability.com/talks/.
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Visual guide to Laplace–Beltrami eigenfunctions

Sample eigenfunction on the spheredragon
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A Gaussian process regression problem on the dragon

(a) Ground truth (b) Posterior mean

(c) Standard deviation (d) A sample path

20


	Gaussian Process Regression
	Gaussian Process Priors
	Non-Euclidean Case
	Applications
	Conclusion

