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Gaussian Process Regression



Gaussian Processes

Gaussian processes are function-valued Gaussian random variables.

Defn. Gaussian process (GP) is a family of random variables {f(x)}, . x

such that every finite collection f(x1), .., f(x,) is jointly Gaussian.

The distribution of a Gaussian process is determined by
e a mean function m(x) = E(f(x)),
e a covariance function k(x, x") = Cov(f(x), f(x’)).
Note: k is also called a kernel.

Notation: f ~ GP(m, k).

k must be positive definite, i.e. for x = x1, .., x, with x; € X the matrix

Kx = {k(xi, ) }1<i<n
1<)<n

must always be positive definite.



Gaussian Process Regression

Gaussian Process Regression (GPR) is a regression method that takes in
e a prior Gaussian process distribution GP(m, k) for X — R functions,
e and data (x1,)1), .., (Xn,¥n) € X X R,

~

It then yields a posterior (conditional) GP distribution GP(rf, k) that
respects the data.

Instead of looking at the formulas, let us explore this visually!









Ian process regression

ide to Gauss

Visual gu




Ian process regression

ide to Gauss

Visual gu










Applications

Bayesian Optimization in AlphaGo

Yutian Chen, A ja Huang, Ziyu Wang, Ioannis Antonoglou, Julian Schrittwieser,
David Silver & Nando de Freitas

DeepMind, London, UK

Also

e geostatistcs,
e robotics (dynamical systems modeling),

® Mmore...



Gaussian Process Priors



General Purpose Gaussian Process Priors

Assume we want to model a function R? — IR, which prior to take?

When we don’t know much about the function, we take GP(m, k) with
e m(x) = p a constant mean function,

o k(x,x") = ky . 2(x,x") the Matérn kernel.

Matérn kernels are defined by

1—v o v .
o (0¥ = o 2 (Va2 =X g (=Xl
h r(v) K K

2 .
o°: variance  k: length scale  v: smoothness
K, — modified Bessel function of the 2nd kind.

In the limit v — oo we also get the famous Gaussian kernel:

, 2 I = x||?
Koo o002 (X, x') = 0" exp| ——%——

2K2



Visual guide to Matérn kernels
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(a) Matérn kernels as functions of ||x — x’||; (b) GP sample paths



Non-Euclidean Case




Generalizing these priors to a non-Euclidean setting

Consider substituting Riemannian geodesic distance dy(x, x") on some
manifold M instead of || x — x’||, e.g. the following kernel:

dm(x, x’ )2)

koo,n‘,n! (Xa X/) =0’ exp ( 212

This doesn't work, the kernel may fail to be positive-definite:
This CVPR2015 paper is the Open Access version, provided by the Computer Vision Foundation.

The authoritative version of this paper is available in IEEE Xplore.

Geodesic Exponential Kernels: When Curvature and Linearity Conflict

Aasa Feragen Frangois Lauze Sgren Hauberg
DIKU, University of Copenhagen DIKU, University of Copenhagen DTU Compute
Denmark Denmark Denmark
aasa@diku.dk francois@diku.dk sohau@dtu.dk



SPDE Definition of Matérn Gaussian Processes

By Whittle 63, if f ~ GP(0, k. .,1), then it satisfies this particular SPDE:
2v 5+4
(—A) Fow.

Here VW is the Gaussian white noise, d is the dimension.
The fractional differential operator on the left is made precise through
2v F+e 1 (2v 5 54
(Z-a) r=rr(Bar) N

where F denotes the Fourier transform operator.

For compact Riemannian manifolds For weighted undirected graphs
1. A — Laplace-Beltrami, 1. A — Laplacian matrix,
2. W — white noise controlled by 2. W — collection of i.i.d.
the Riemannian volume. Gaussians, i.e. N(0, /).
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Solution of the SPDE

Represent the Gaussian white noise by

W= Wy,  w,~N(0,1)(iid)

n>0

Then the SPDE can be rewritten in form

d
+7

2v 7
Z (K2+>\”) <f7 fﬂ>fn:Zann-
n=0 n>0
Hence o
2v T2
f:z<f7 fn>fn: <H2+)\n) ann
n>0 n>0
Finally
2]/ 7llfd/2
kxx) = Coulf 0 ) = 3 (2 #00) l)fl)
K
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Matérn kernels on compact Riemannian manifolds

2 2v v—% ,
The kernel: k. ,2(x,x") — + fu(X)fn(x")
, ) -
n= 0
52 & /oy -5-1%
The process: = c E (2 > Wy Tn(X).

n=|
An, o are Laplace—Beltrami eigenpairs.

In some cases (e.g. tori, spheres) — known analytically, in others (e.g.
the dragon manifold) may be approximated numerically.
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Figure: values of Matérn kernel ky /5(x,-). x is marked with a red dot. 1



Matérn kernels on finite weighted undirected graphs

o [VI-1

., O 2v e
The kernel: ky.s.o2(i,J) = < HEZO (/{2 + )\n) fa(Nfa ()
o2 Vit 2v ~2
The process: f(i)= = E (2 + )\n> Wy fa(7)
y K
n=0

An, fn are eigenpairs of the Laplacian matrix.

May be evaluated by SVD or an iterative (Lanczos type) algorithm.
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Figure: values of Matérn kernel ks/5(x,-). x node has red outline.
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Applications




Pendulum Dynamics — GP on a Cylinder

(a) Ground truth (b) 95%-confidence
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Traffic speed interpolation — GP on a Road Network

Denoe—om——

A
Map tiles by Stamen Design, CC BY 3.0 - Map data (C) OpenStreetMap contributors




Conclusion




1. Euclidean general purpose GP priors may be generalized via the
SPDE definition, while the distance based approach does not work.

2. In compact Riemannian or finite graph settings, the SPDE may be
solved yielding tractable (approximate) kernels.

3. This enables GP based methods to be used in new applications.
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Matérn Gaussian processes on graphs STAJQS
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Thank you for your attention!

viacheslav.borovitskiy@gmail.com https://vab.im

)

e, | St Petersburg
LI [ University

?,,SE*E Department of Mathematics
i@:ﬂ*‘ and Computer Science

Some figures were taken from: http://inverseprobability.com/talks/.
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Visual guide to Laplace—Beltrami eigenfunctions

Sample eigenfunction on the spheredragon 19



A Gaussian process regression problem on the dragon

(a) Ground truth (b) Posterior mean

(c) Standard deviation (d) A sample path
20
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