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Mini course structure

Lecture 1 Intro to Bayesian methods & Gaussian process regression, applications.
Almost no formulas, a hand-wavy exposition with lots of pictures.

Lecture 2 Predicting with Gaussian random fields and generating their sample paths.
A more rigorous intro to Gaussian process regression. Basic algorithms and
their downsides. Can we do better?

Lecture 3 Efficient algorithms for sampling and conditioning.
Sampling stationary Gaussian fields. Sampling conditional Gaussian fields.
Approximate conditioning of Gaussian fields. Conclusion.
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Part I

Introduction to Bayesian methods
Gaussian process regression

Applications
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Today’s talk structure

1 Introduction

2 Bayesian inference for an unfair coin

3 Gaussian processes

4 Applications
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Language and notation

“Gaussian process (GP)” and “Gaussian random field (GRF)” — interchangeably.

Sometimes I may use the Bayesian language. For instance,

p(a) — density of random vector a,
p(b) — density of random vector b.
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GPs are indeed useful

They used GPs to model target function and guide decision (optimization) process.
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Problem setup
The problem: estimate the unknown parameter of an unfair coin.

Let X be a random variable modeling an unfair coin.
It takes two values: 1 (for heads) and 0 (for tails)

P(X = 1) = p, P(X = 0) = 1− p.
We want to estimate p.

Frequentist approach Bayesian approach

Result: a number p̂.
Tool: maximum likelihood estimation.
Extra: —.

p̂ = arg max p#1(1− p)#0

Result: a distribution (density) ρ̂(p).
Tool: Bayes theorem.
Extra: requires a prior density ρ(p).

ρ̂(p) ∝ p#1(1− p)#0ρ(p)
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Example
Uniform prior ρ(p) := 1[0,1](p) and Bernoulli likelihood P(X = v | p) = pv(1− p)1−v.
Assume that true p is 0.5,
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Example
Uniform prior ρ(p) := 1[0,1](p) and Bernoulli likelihood P(X = v | p) = pv(1− p)1−v.
Assume that true p is 0.5,

Observed: 1
MLE: p̂ = 1
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Example
Uniform prior ρ(p) := 1[0,1](p) and Bernoulli likelihood P(X = v | p) = pv(1− p)1−v.
Assume that true p is 0.5,

Observed: 11
MLE: p̂ = 1
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Example
Uniform prior ρ(p) := 1[0,1](p) and Bernoulli likelihood P(X = v | p) = pv(1− p)1−v.
Assume that true p is 0.5,

Observed: 111
MLE: p̂ = 1
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Example
Uniform prior ρ(p) := 1[0,1](p) and Bernoulli likelihood P(X = v | p) = pv(1− p)1−v.
Assume that true p is 0.5,

Observed: 1110
MLE: p̂ = 0.75
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Example
Uniform prior ρ(p) := 1[0,1](p) and Bernoulli likelihood P(X = v | p) = pv(1− p)1−v.
Assume that true p is 0.5,

Observed: 11101
MLE: p̂ = 0.8
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Example
Uniform prior ρ(p) := 1[0,1](p) and Bernoulli likelihood P(X = v | p) = pv(1− p)1−v.
Assume that true p is 0.5,

Observed: 11101 10001 10100
MLE: p̂ = 0.53
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Example
Uniform prior ρ(p) := 1[0,1](p) and Bernoulli likelihood P(X = v | p) = pv(1− p)1−v.
Assume that true p is 0.5,

Observed: 300 values
MLE: p̂ = 0.5
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Result

Most importantly, Bayesian approach quantifies uncertainty.

Gaussian processes (GPs) — non-parametric prior over functions.
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Gaussian process regression

GP — distribution over functions.

Bayesian inference for GPs:
prior: hand-picked GP
data: noisy evaluations of the function

likelihood: induced by Gaussian noise assumption
posterior: another GP

Let us explore this visually . . .
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Visual guide to Gaussian process regression
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Visual guide to Gaussian process regression
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What is a Gaussian process?
Gaussian random variable

distribution over R, denoted by N(µ, σ2),
determined by two numbers: mean µ and variance σ2.

Multivariate Gaussian random variable
distribution over Rd, denoted by N(µ,Σ),
determined by the mean vector µ and the covariance matrix Σ.

Gaussian process
distribution over functions from X to R, denoted by GP(m, k),
determined by two functions m : X → R (mean) and k : X ×X → R (covariance).

Gaussian processes are appealing in practice due to their simplicity (among other
stochastic processes).
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Bayesian inference for GPs
Bayesian inference for GPs takes in

a prior distribution over functions of form GP (m, k),
noisy evaluations y1, .., yn of the unknown function of interest at x1, .., xn.

and returns the distribution over functions of form

GP (m̂, k̂).

Given m and k, the functions m̂ and k̂ can be computed in a finite time. Specifically:

m̂(u) = m(u) + Kf(u)f(x)
(
Kf(x)f(x) + σ2I

)−1
(y −m(x))

k̂(u, v) = k(u, v)−Kf(u)f(x)

vector 1×n

(
Kf(x)f(x) + σ2I

)−1

matrix n×n

Kf(x)f(v)

vector n×1

.
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The Gaussian process regression algorithm

So how do we turn the data (x1, y1), .., (xn, yn) into a reasonable stochastic model
interpolating it?

1 Come up with a parametric families mθ and kθ for prior mean and covariance
functions.

2 Use maximum likelihood estimation to pick the optimal set of parameters θ and
the optimal noise value σ2 from data (x1, y1), .., (xn, yn).

3 Perform Bayesian inference with prior GP (mθ, kθ), data (x1, y1), .., (xn, yn) and
likelihood noise σ2.
As a result, obtain the posterior m̂ and k̂.

4 Use
I N(m̂(u), k̂(u, u)) as a stochastic prognosis at a new location u.
I use samples of GP (m̂, k̂) as an ensemble of possible deterministic models.

Viacheslav Borovitskiy (SPbU, PDMI) Gaussian random fields in ML 17 / 99



Visual guide to Gaussian process regression
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Visual guide to Gaussian process regression
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Geostatistical modeling of petroleum reservoirs
Problem: interpolate well data into the interwell space.
The data is very sparse, thus deterministic model is undesirable.

Reservoir structure, well locations.
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Geostatistical modeling of petroleum reservoirs
Problem: interpolate well data into the interwell space.
The data is very sparse, thus deterministic model is undesirable.

A single sample of a Gaussian process model in the interwell space
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Bayesian optimization of expensive black-box functions

Problem: minimize the target function φ : Rd → R.
At n’th step φ has already been evaluated at x1, .., xn. How do we choose xn+1?

Build posterior GP f using data

x1, .., xn, φ(x1), .., φ(xn).

Choose
xn+1 = arg max

x∈Rd

P(f(x) < min
i=1..n

φ(xi)). (MPI)

or
xn+1 = arg max

x∈Rd

Emax( min
i=1..n

φ(xn)− f(x), 0). (EI)

Automatic exploration/exploitation trade-off.
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Example

Let us minimize Forrester function f(x) = (6x− 2)2 sin(12x− 4).

Choose some prior as f0 ∼ GP(?, ?).

Viacheslav Borovitskiy (SPbU, PDMI) Gaussian random fields in ML 22 / 99



Example
Iteration 1.
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Example
Iteration 2.
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Example
Iteration 3.
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Example
Iteration 4.
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Example
Iteration 5.
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Example
Iteration 6.
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Example
Iteration 7.
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Example
Iteration 8.

Viacheslav Borovitskiy (SPbU, PDMI) Gaussian random fields in ML 23 / 99



Example
Iteration 9.
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Example
Iteration 10.
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Example
Iteration 11.
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Example
Iteration 12.
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Example
Iteration 13.
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Example
Iteration 14.
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Example
Iteration 15.
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Example
Iteration 16.
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Example
Iteration 17.
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Example
Iteration 18.
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Example
Iteration 19.
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Example
Iteration 20.
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Example

Let us compare the model after 20 iterations with the target function.

(a) Target function (b) GP model
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Robotics and control

Classical control problem: physics is known, find optimal control.
Reinforcement learning problem: physics is unknown, try to learn physics from data and
on the go build the optimal control.
Second approach is supposed to bring us the cheap robots, for which

we don’t indeed know the physics (it deviates too much from the “ideal”),
learning this physics by hand is of course possible, but it increases the price.
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PILCO for robotics and control
PILCO (Probabilistic Inference for Learning COntrol) — an approach that uses GPs to
model the unknown physics.

The model can be described by xt+1 = f(xt, ut) + w, where
xt — trajectory,
ut — control,
f models physics,
w ∼ N(0, σ2) — random noise.
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PILCO for robotics and control
Imagine that f is modeled deterministically.

Consider a prognosis at x = 7.
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PILCO for robotics and control
Imagine that f is modeled deterministically.

There exists a number of plausible models and thus a number of different predictions.
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PILCO for robotics and control
What if we model f as a GP?

If we use GPs, we are able to use an infinite number of plausible models all at once.
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Example: learning to control a pendulum
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Example: learning to control a pendulum
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Example: learning to control a pendulum
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Example: learning to control a pendulum
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Example: learning to control a pendulum

Once more...
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Example: learning to control a pendulum
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Example: learning to control a pendulum
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Example: learning to control a pendulum
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Example: learning to control a pendulum
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Thank you for your attention!
viacheslav.borovitskiy@gmail.com

Mathematics & Computer Science department

Some figures were taken from: http://inverseprobability.com/talks/.
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Part II

Predicting with Gaussian random fields and
generating their sample paths
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Today’s talk structure

5 Conditional distribution of a Gaussian vector

6 Example application: Bayesian linear regression

7 Conditional Gaussian process

8 Algorithms for predicting and sampling
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Outline

5 Conditional distribution of a Gaussian vector

6 Example application: Bayesian linear regression

7 Conditional Gaussian process
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Foreword
In the previous talk we discussed Bayesian inference for Gaussian processes.

For discrete random variables Θ, D Bayes theorem states that

P(Θ = θ | D = d)
Posterior

=

Likelihood

P(D = d | Θ = θ)
Prior

P(Θ = θ)
P(D = d)

Normalizing constant

.

For absolutely continuous random variables θ, d Bayes theorem states that

p(θ | d) = p(d | θ)p(θ)
p(d) with p(θ | d) = p(θ, d)

p(d) and p(d | θ) = p(θ, d)
p(θ) ,

where p(θ, d) is the joint density of θ and d.

Bayes theorem is about conditional distributions.
Let’s find one for Gaussian random vectors first!
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The problem
Consider a random vector divided in two parts

x=
(
x1
x2

)
∼ N(m,Σ)=N

((
m1
m2

)
,

(
Σ11 Σ12
Σ21 Σ22

))
.

Let P = Σ−1 denote the precision matrix with blocks P =
(
P11 P12
P21 P22

)
.

Then x has density

p(x1, x2) = |2πΣ|−1/2 exp
(
−1

2
(
x>1 −m>1 , x>2 −m>2

)(P11 P12
P21 P22

)(
x1 −m1
x2 −m2

))
.

What is the distribution p(x1 | x2) of x1 given the value of x2?
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Some linear algebra
Completing the square for numbers:

ax2 + bx+ c = a(x− h)2 + k with h = − b

2a and k = c− b2

4a.

Completing the square for matrices (A = A>):

x>Ax+x>b+c = (x−h)>A(x−h)+k with h =−1
2A
−1b and k = c− 1

4b
>A−1b.

Block matrix inversion:

M−1 =
(
A B
C D

)−1

=
(

(M/D)−1 −(M/D)−1BD−1

−D−1C(M/D)−1 D +D−1C(M/D)−1BD−1

)
,

where M/D = A−BD−1C is called the Schur complement.
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The computation (part 1)
We have joint density

p(x1, x2) = |2πΣ|−1/2 exp
(
−1

2
(
x>1 −m>1 , x>2 −m>2

)(P11 P12
P21 P22

)(
x1 −m1
x2 −m2

))
.

Then p(x1 | x2) = p(x2|x1)p(x1)
p(x2) = p(x1,x2)

p(x2) , where p(xj) =
∫
p(x1, x2) dxj, hence

p(x1 | x2) = C(x2) exp
(
(x>1 −m>1 )P11(x1 −m1) + 2(x>1 −m>1 )P12(x2 −m2)

)
= Ĉ(x2) exp

(
x>1 P11x1 + 2x>1 (P12(x2 −m2)− P11m1)

)
x>Ax+x>b+c = (x−h)>A(x−h)+k with h =−1

2A
−1b and k = c− 1

4b
>A−1b

= C̃(x2) exp
(
(x1 − m̂1)>P11(x1 − m̂1)

)
where m̂1 = −P−1

11 (P12(x2 −m2)− P11m1).
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The computation (part 2)

We have
p(x1 | x2) = C̃(x2) exp

(
(x1 − m̂1)>P11(x1 − m̂1)

)
where m̂1 = −P−1

11 (P12(x2 −m2)− P11m1).(
A B
C D

)−1

=
(

(M/D)−1 −(M/D)−1BD−1

−D−1C(M/D)−1 D +D−1C(M/D)−1BD−1

)
,M/D = A−BD−1C.

By these formulas, P−1
11 P12 = −Σ12Σ−1

22 , hence m̂1 = Σ12Σ−1
22 (x2 −m2) +m1.

Besides that, P11 = (Σ11 − Σ12Σ−1
22 Σ21)−1.
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The result
Since

p(x1 | x2) = C̃(x2) exp
(
(x1 − m̂1)>Σ̂−1(x1 − m̂1)

)
,

with
m̂1 = Σ12Σ−1

22 (x2 −m2) +m1,
Σ̂ = P−1

11 = Σ11 − Σ12Σ−1
22 Σ21

we have
x1 | x2 ∼ N

(
m1 + Σ12Σ−1

22 (x2 −m2),Σ11 − Σ12Σ−1
22 Σ21

)
.

Note that
the conditional distribution is again Gaussian,
its parameters are computable through linear algebra,
the “variance” is now lower (condtioning reduces uncertainty).
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Bayesian perspective
Taking the more Bayesian perspective, we could have started, intead of the joint, with

prior x1 ∼ N(m1,Σ11)
and likelihood p(x2 | x1) = N(Σ21m2 + Σ−1

11 (x1 −m1),Σ22 − Σ21Σ−1
11 Σ12).

They determine the joint, so it is just another perspective on the same problem.

An important example
A priori think that x1 ∼ N(0, C).
Observe x2 = x1 + ε with ε ∼ N(0, σ2

nI) that is independent of x1.
Because of that p(x2 | x1) = N(x1, σ

2
nI), hence

p(x1 | x2) = N(C
(
C + σ2

nI
)−1

x2, C − C
(
C + σ2

nI
)−1

C)

Note how formally p(x1 | x2) = N(x2, 0) when σ2 = 0 and we observe x1 itself.
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Outline

5 Conditional distribution of a Gaussian vector

6 Example application: Bayesian linear regression

7 Conditional Gaussian process

8 Algorithms for predicting and sampling

Viacheslav Borovitskiy (SPbU, PDMI) Gaussian random fields in ML 43 / 99



Linear regression
Given data t1, y1; . . . ; tn, yn with ti ∈ Rd, yi ∈ R.
E.g. yi — apartment price, ti — apartment parameters (size, floor height etc.).

The standard linear regression problem is to find a linear model
f(t) = w>t for some vector of weights w ∈ Rd, such that

∑n

i=1(yi − f(ti))2 is minimal.

3 2 1 0 1 2 3
3

2

1

0

1

2

3

(a) Data t1, y1; . . . ; tn, yn

3 2 1 0 1 2 3
3

2

1

0

1

2

3

(b) Data & linear model f(t) = w>t
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Bayesian linear regression
Take the model f(t) = w>t and assume a priori w ∼ N(0, I).
Put y(t) = f(t) + σ2

nε(t), where ε(t) ∼ N(0, 1) is i.i.d. normal noise.

Every f(t) and y(t) is a Gaussian random variable, moreover
Cov(f(t), f(t′)) = t>t′ and Cov(y(t), y(t′)) = t>t′ + σ2

n1t=t′ ,
Cov(f(t), y(t′)) = Cov(y(t), f(t′)) = t>t′.


f(t)
y(t1)

...
y(tn)

 ∼ N

0,


t>t t>t1 . . . t>tn
t>1 t t>1 t1 + σ2

n . . . t>1 tn
... ... . . . ...
t>n t t>n t1 . . . t>n tn + σ2

n



 = N
0,

 Σ11 Σ12

Σ21 Σ22

.

And analogously
(
w>, y(t1), . . . , y(tn)

)>
∼ N

(
0, C11 C12

C21 C22

)
.
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Bayesian linear regression
Then, denoting y = (y1, . . . , yn)>, we compute

p(f(t) | y(t1) = y1; . . . ; y(tn) = yn) = N
(
Σ12Σ−1

22 y,Σ11 − Σ12Σ−1
22 Σ21

)
p(w | y(t1) = y1; . . . ; y(tn) = yn) = N

(
C12C

−1
22 y, C11 − C12C

−1
22 C21

)

3 2 1 0 1 2 3
3

2

1

0

1

2

3

(a) Linear regression
3 2 1 0 1 2 3
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(b) Bayesian linear regression
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Picking the prior and likelihood parameters

Consider the density p(y1, . . . , yn) = N

0,


t>1 t1 + σ2

n . . . t>1 tn
... . . . ...

t>n t1 . . . t>n tn + σ2
n




as a function of σ2
n and maximize it with respect to σ2

n.
In this context, p(y1, . . . , yn) is called the marginal likelihood of the data.
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(a) Default likelihood noise
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(b) Optimized likelihood noise
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Stochastic processes, their sample paths and distributions

A stochastic process is a family X = {Xt}t∈T of random variables.
T is some set. Depending on T different terms may be used:

I random field, when T ⊆ Rd,
I random sequence, when T ⊆ Z.

Xt at different values of t may be dependent (and usually are).
Alternatively, it can be defined as a random variable on some space of functions.
Should be thought of as random function of t ∈ T .

X can be considered as a real valued function X(ω, t) of ω ∈ Ω, t ∈ T .
Then X(ω, ·) is called its trajectory or sample path.

The system of distributions PX
t1,...,tn(A) = P((Xt1 , . . . , Xtn) ∈ A) for all n ∈ N,

t1, . . . , tn ∈ T and A ∈ Bn is called the distribution of the random process X.
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Gaussian processes
X is a Gaussian process if all its PX

t1,...,tn are multivariate Gaussian.
The distribution of a Gaussian process is determined by a pair of functions:

m(·) : T → R — the mean function,
k(·, ·) : T × T → R — the covariance function (kernel),

such that

PX
t1,...,tn = N



m(t1)

...
m(tn)



k(t1, t1) . . . k(t1, tn)

... . . . ...
k(tn, t1) . . . k(tn, tn)




A covariance matrix C should be positive semidefinite: satisfy C> = C and x>Cx ≥ 0.
A valid covaraince function k should be positive semidefinitite function. That is, for any
n and t1, . . . , tn, the covariance matrix as above should be positive semidefinite.

For every m and positive semidefinite k there exists a Gaussian process having them as
its mean and covaraiance functions
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Conditional process
Consider an l-dimensional random vector Y and some value y ∈ Rl.

Define the conditional distribution of a process X given Y = y to be the family
P
X|Y=y
t1,...,tn = P((Xt1 , . . . , Xtn) ∈ A | Y = y)

of conditional distributions.

Consider a Gaussian process X and Y = (X(t1), . . . , X(tn)) + σ2
nε with ε ∼ N(0, I).

Fix some l ∈ N, t̃1, . . . , t̃l ∈ T and denote X(t̃) = (X(t̃1), . . . , X(t̃l)).
Denote also m(t̃) =

(
m(t̃1), . . . ,m(t̃l)

)
and m(t) = (m(t1), . . . ,m(tn)).

Then, by the conditioning formula for jointly Gaussian vectors, we have
p(X(t̃) | Y = y) = N(m(t̃) + Cov(X(t̃), Y ) Cov(Y, Y )−1(y −m(t)),

Cov(X(t̃), X(t̃))− Cov(X(t̃), Y ) Cov(Y, Y )−1 Cov(Y,X(t̃)))
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Conditional Gaussian process

Hence X | Y = y is again Gaussian with mean m̂(·) and covariance k̂(·, ·) given by

m̂(t) = m(t) + Cov(X(t), Y ) Cov(Y, Y )−1(y −m(t))
k̂(t, t′) = Cov(X(t), X(t′))− Cov(X(t), Y ) Cov(Y, Y )−1 Cov(Y,X(t′))

Note
the right hand sides are determined by m(·), k(·, ·) and by σ2

n and y,
the computation of m̂(t) and k̂(t, t′) can be done by a computer,
with X(t) = (X(t1), . . . , X(tn)), we have Cov(Y, Y ) = Cov(X(t), X(t)) + σ2

nI,
the variance decreases: k̂(t, t) ≤ k(t, t) — we gained some information.

This is exactly the “Bayesian inference for GPs” we have seen earlier!
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Conditional Gaussian process: an example
Brownian motion — GP with T = [0,∞), m(t) = 0 and k(t, t′) = min(t, t′).
Denote it by X.

Brownian bridge — X | X(1) = 0.
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(a) Brownian motion
0.0 0.2 0.4 0.6 0.8 1.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(b) Brownian bridge
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Conditional Gaussian processes for the toy dataset
Now consider a GP X with T = (−∞,∞), m(t) = 0 and k(t, t′) = σ2 exp

(
−|t−t′|2/2l2

)
.

Put Y (ti) = X(ti) + σ2
nεi, where εi ∼ N(0, 1) is i.i.d. noise.

σ2, l and σ2
n are some parameters. Consider, for now, σ2 = 1, l = 1, σ2

n = 1.
Let us solve the toy problem using the conditional GP model:

f(·) = X | Y (t1) = y1, . . . , Y (tn) = yn
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(a) Bayesian linear regression
3 2 1 0 1 2 3

3

2

1

0

1

2

3

(b) Gaussian process regression
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Conditional Gaussian processes: hyperparameter optimization
X from the previous slide had parameters σ2 and l in k(t, t′) = σ2 exp

(
−|t−t′|2/2l2

)
.

Besides that, the likelihood was parameterized by the noise variance σ2
n.

How can we find the optimal values of these parameters?

Consider the density of (Y (t1), . . . , Y (tn)) as a likelihood function and maximize it.
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(b) GPR with optimal parameters
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The Gaussian process regression algorithm

So how do we turn the data (x1, y1), .., (xn, yn) into a reasonable stochastic model
interpolating it?

1 Come up with a parametric families mθ and kθ for prior mean and covariance
functions.

2 Use maximum likelihood estimation to pick the optimal set of parameters θ and
the optimal noise value σ2 from data (x1, y1), .., (xn, yn).

3 Perform Bayesian inference with prior GP (mθ, kθ), data (x1, y1), .., (xn, yn) and
likelihood noise σ2.
As a result, obtain the posterior m̂ and k̂.

4 Use
I N(m̂(u), k̂(u, u)) as a stochastic prognosis at a new location u.
I use samples of GP (m̂, k̂) as an ensemble of possible deterministic models.
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Predicting and generating sample paths
Predicting

When our ultimate interest is knowing
X(t) for new values of t.
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RBF, default parameters

Sampling

When our ultimate interest is knowing
F (X) for some operator F .
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RBF, default parameters
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Predicting and generating sample paths
Predicting

When our ultimate interest is knowing
X(t) for new values of t.
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RBF, optimized parameters

Sampling

When our ultimate interest is knowing
F (X) for some operator F .
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RBF, optimized parameters
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Predicting and generating sample paths
Predicting

When our ultimate interest is knowing
X(t) for new values of t.
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Brownian, optimized parameters

Sampling

When our ultimate interest is knowing
F (X) for some operator F .
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Brownian, optimized parameters
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Geostatistical modeling of petroleum reservoirs
Problem: interpolate well data into the interwell space.
The data is very sparse, thus deterministic model is undesirable.

Reservoir structure, well locations.
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Geostatistical modeling of petroleum reservoirs
Problem: interpolate well data into the interwell space.
The data is very sparse, thus deterministic model is undesirable.

A single sample of a Gaussian process model in the interwell space
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Predicting
Recall that a Gaussian process X with mean m and covariance k conditioned on Y = y
for some Gaussian vector Y has distribution

m̂(t) = m(t) + Cov(X(t), Y ) Cov(Y, Y )−1(y −m(t))
k̂(t, t′) = Cov(X(t), X(t′))− Cov(X(t), Y ) Cov(Y, Y )−1 Cov(Y,X(t′))

Take Y = X(t) + σ2
nε with X(t) = (X(t1), . . . , X(tn)) and ε ∼ N(0, I).

Then we have

m̂(t) = m(t) +KX(t)X(t)
(
KX(t)X(t) + σ2

nI
)−1

(y −m(t))

k̂(t, t′) = k(t, t′)−KX(t)X(t)
(
KX(t)X(t) + σ2

nI
)−1

KX(t)X(t)

The time complexity of prediction is O(n3), the space complexity is O(n2).
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Sampling a Gaussian vector via Cholesky decomposition

Consider a Gaussian vector x ∼ N(m,Σ) of size d.

It can be represented in form

x = m+ Σ1/2ε with ε ∼ N(0, I).

Σ1/2 is a matrix square root, i.e. Σ1/2(Σ1/2)> = Σ.
There are many of them.

In practice Σ1/2 is found through the Cholesky decomposition algorithm.

It has time complexity O(d3) and space complexity O(d2).
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The naive algorithm to sample a Gaussian process

Assume we want to sample a process X with mean m and covariance k.

To do this, we discretize T into a mesh with nodes t1, .., tl.

And sample the Gaussian vector
X(t1)

. . .
X(tl)

 ∼ N



m(t1)

...
m(tl)



k(t1, t1) . . . k(t1, tl)

... . . . ...
k(tl, t1) . . . k(tl, tl)




This costs O(l3) time, O(l2) space and yields samples on a grid.

This complexity makes it impossible to use this algorithm in high dimensions.
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Can we do better?

Yes.

To be continued...
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Thank you for your attention!
viacheslav.borovitskiy@gmail.com

Mathematics & Computer Science department

Some figures were taken from: http://inverseprobability.com/talks/.
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Part III

Efficient algorithms for sampling and
conditioning
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Today’s talk structure

9 Efficiently sampling a stationary Gaussian processes

10 Sampling from a conditional process

11 Efficient conditioning

12 Conclusion
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Outline

9 Efficiently sampling a stationary Gaussian processes

10 Sampling from a conditional process

11 Efficient conditioning

12 Conclusion
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Stationary Gaussian processes
From now on assume that T = Rd.

A random process X is called stationary if its distribution is unaffected by shifts.
Formally, X is stationary if PX

t1,...,tn = PX
t1+t,...,tn+t for any n ∈ N and t; t1, . . . , tn ∈ Rd.

If X is Gaussian, than we only need

m(t+ τ) = m(t) ≡ const and k(t+ τ, t′ + τ) = k(t, t′) = κ(t− t′).

Example: GP with RBF kernel
Stationary, since k(t, t′) = σ2 exp

(
−|t−t′|2/2l2

)
depends only on t− t′.

Brownian motion
Not stationary, since k(t, t′) = min(t, t′) for instance has k(0, 0) = 0 6= 1 = k(1, 1).
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Spectral representation of a stationary covariance function

Define the one-parameter covariance function κ(τ) = k(t, t+ τ).

Bochner’s theorem
If κ is positive-definite, there exists a unique finite positive measure µ on Rd such that

κ(τ) =
∫
Rd
e2πiτ>s dµ(s).

µ is called the spectral measure. If µ has density ρ(s), it is called the spectral density.
The converse statement holds as well.

Example: the RBF kernel
For κ(τ) = σ2 exp

(
−‖τ‖2

/2l2
)

we have ρ(s) = σ2(2πl2)d/2 exp
(
−2π2l2‖s‖2

)
.
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Random measures and a stochastic integral
Consider a measure space (S,A, µ), where S is a set, A ⊆ 2S is a σ-algebra and µ is a
finite positive measure.

A family of complex valued random variables F = {FA}A∈A that satisfies
EF (A) = 0, A ∈ A,
Cov(F (A1), F (A2)) = E

(
F (A1)F (A2)

)
= µ(A1 ∩ A2), A1, A2 ∈ A,

F (∪nj=1Aj) = ∑n
j=1 F (Aj) a.s. for n ∈ N and non-intersecting A1, . . . , An ∈ A

is called a centered random measure with uncorrelated values with intensity measure µ.

Define for a simple function f = ∑n
j=1 cj1Aj

with Aj ∈ A the integral∫
Rd
f dF =

n∑
j=1

cjF (Aj)

For simple functions 〈f1, f2〉L2(Rd,µ) = Cov(
∫
Rd f1 dF,

∫
Rd f2 dF ) — the isometry prop.

Hence we can extend the integral to arbitrary f ∈ L2(Rd, µ).
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Spectral representation of a stationary Gaussian process
Let F be a Gaussian centered random measure with uncorrelated values.
Denote its intensity measure by µ. Define

Y (t) =
∫
e2πit>u dF (u), t ∈ Rd

then, thanks to the isometry property of the integral, we have

Cov(Y (t), Y (t′)) =
∫
Rd
e2πi(t−t′)u dµ(u) = K(t− t′).

Thus, Y is a stationary Gaussian process.

The remarkable fact is that every stationary GP with continuous covariance admits such
a spectral representation. In this case F (A) = U(A) + iV (A), A ∈ A, where

U(A), V (A) ∼ N(0, µ(A)/2),
U(A) ⊥ V (A) and U(A) ⊥ U(B), V (A) ⊥ V (B), U(A) ⊥ V (B) for A ∩B = ∅.
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Sampling by means of the spectral representation
Assume that X ∼ GP(0, k) is a stationary GP over Rd with known spectral measure µ.
— in practice, we usually know the spectral density in closed form.

Consider some partition Rd = ∪Jj=1Aj and select some points uj ∈ Aj, then write

X(t) =
∫
Rd
e2πit>u dF (u) =

J∑
j=1

∫
Aj

e2πit>u dF (u)

≈
J∑
j=1

e2πit>uj

∫
Aj

dF (u) =
J∑
j=1

e2πit>ujF (Aj).

To sample from the right hand side it is enough to sample random variables F (Aj).
This is easy since

F (Aj) = U(Aj) + iV (Aj) and all {U(Aj)}Jj=1 ∪ {V (Aj)}Jj=1 are independent,
to sample U(Aj) or V (Aj) it is enough to compute µ(Aj) =

∫
Aj

1 dµ.
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Basic error analysis of the method
Let us show that X(t) ≈ ∑J

j=1 e
2πit>ujF (Aj) is indeed an approximation. Write

E
∣∣∣∣X(t)−

J∑
j=1

e2πit>ujF (Aj)
∣∣∣∣2 = E

∣∣∣∣∫
Rd

(
e2πit>u −

J∑
j=1

e2πit>uj 1Aj
(u)
)

dF (u)
∣∣∣∣2

=
∫
Rd

∣∣∣∣e2πit>u −
J∑
j=1

e2πit>uj 1Aj
(u)
∣∣∣∣2 dµ(u)

To estimate the right hand side we need to
pick a reasonable partition Rd = ∪Jj=1Aj,
leverage the “decay” property of µ: that µ(|t| > α) −−−→

α→∞
0 at some rate.

Main idea
For j = J : make Aj large but with small µ(Aj).
For j 6= J : make Aj small so that e2πit>uj is close to e2πit>u.
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Basic error analysis of the method (continued, part 2)
Consider d = 1 for simplicity and assume µ(|t| > α) = O(1/αp) for some p > 0.

Without loss of generality, assume we only need to estimate∫
R+

∣∣∣∣e2πit>u −
J∑
j=1

e2πit>uj 1Aj
(u)
∣∣∣∣2 dµ(u).

Fix a small ε > 0 and partition R+ = ∪Jj=1Aj like this:

∞0

A1

ε

A2

2ε

. . .

(J − 2)ε

AJ−1

(J − 1)ε

AJ

Assume additionally that µ(R+) ≤ 1 and that |t| ≤ tmax. Then∫
R+
|. . .|2 dµ(u) =

J−1∑
j=1

∫
Aj

∣∣∣∣e2πit>u − e2πit>uj

∣∣∣∣2︸ ︷︷ ︸
≤4π2|t|2|u−uj |2≤4π2t2maxε

2

dµ(u) +
∫
AJ

∣∣∣∣e2πit>u − e2πit>uJ

∣∣∣∣2︸ ︷︷ ︸
≤4

dµ(u)
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Basic error analysis of the method (continued, part 3)

∫
R+
|. . .|2 dµ(u) =

J−1∑
j=1

∫
Aj

∣∣∣∣e2πit>u − e2πit>uj

∣∣∣∣2︸ ︷︷ ︸
≤4π2|t|2|u−uj |2≤4π2t2maxε

2

dµ(u) +
∫
AJ

∣∣∣∣e2πit>u − e2πit>uJ

∣∣∣∣2︸ ︷︷ ︸
≤4

dµ(u)

≤
J−1∑
j=1

4π2t2maxε
2 + 4µ(|u| > (J − 1)ε)

≤ (J − 1)4π2t2maxε
2 + 4 1

((J − 1)ε)p

Taking e.g. ε ≈ (J − 1)−3/4, we have
∫
R+
|. . .|2 dµ(u) ≤ 4π2t2max

(J − 1)1/2 + 4
(J − 1)p/4 −−−→J→∞

0
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Covariance approximation point of view
Denote XDFF (t) = ∑J

j=1 e
2πit>ujF (Aj). “DFF” is for Deterministic Fourier Features.

XDFF (t) is a Gaussian process with zero mean and covariance

kDFF (t, t′) = Cov(XDFF (t), XDFF (t′)) =
J∑
j=1

µ(Aj)e2πi(t−t′)>uj .

Bochner’s theorem
If κ is positive-definite, there exists a unique finite positive measure µ on Rd such that

κ(τ) =
∫
Rd
e2πiτ>s dµ(s).

µ is called the spectral measure. If µ has density ρ(s), it is called the spectral density.
The converse statement holds as well.

Obviously, kDFF is can be obtained by approximating k via the Riemannian sum.
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Random Fourier Features
The covariance approximation point of view suggests an alternative method.

Consider the Monte-Carlo approximation

κ(τ) =
∫
Rd
e2πiτ>s dµ(s) = µ(Rd) E

s∼µ/µ(Rd)
e2πiτ>s ≈ µ(Rd)

J

J∑
j=1

e2πiτ>sj =: kRFF ,

where sj iid∼ µ/µ(Rd) and “RFF” is for Random Fourier Features.

Two approximations
kRFF corresponds to: XRFF (t) = µ(Rd)/J

∑J

j=1wje
2πit>sj , wj

iid∼ N(0, 1),

kDFF corresponds to: XDFF (t) =
∑J

j=1(wj1 + iwj2)e2πit>uj , wj·
iid∼ N(0, µ(Aj)/2).

In practice — RFF: Monte Carlo integration behaves well in high dimension.
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Results and example
The complexity of generating a sample path on l-sized grid with J features is

O(l · J) time,
O(max(l, J)) space.

And actually, we don’t need a grid! It’s very useful for e.g. optimization.
Consider X ∼ GP(0, k), where k(t, t′) = σ2 exp

(
−‖t−t′‖2

/2l2
)

with σ2 = 1, l = 1.
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(b) RFF samples with J = 1
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Results and example
The complexity of generating a sample path on l-sized grid with J features is

O(l · J) time,
O(max(l, J)) space.

And actually, we don’t need a grid! It’s very useful for e.g. optimization.
Consider X ∼ GP(0, k), where k(t, t′) = σ2 exp

(
−‖t−t′‖2

/2l2
)

with σ2 = 1, l = 1.
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(a) True samples
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(b) RFF samples with J = 2
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Results and example
The complexity of generating a sample path on l-sized grid with J features is

O(l · J) time,
O(max(l, J)) space.

And actually, we don’t need a grid! It’s very useful for e.g. optimization.
Consider X ∼ GP(0, k), where k(t, t′) = σ2 exp

(
−‖t−t′‖2

/2l2
)

with σ2 = 1, l = 1.
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(b) RFF samples with J = 4
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Results and example
The complexity of generating a sample path on l-sized grid with J features is

O(l · J) time,
O(max(l, J)) space.

And actually, we don’t need a grid! It’s very useful for e.g. optimization.
Consider X ∼ GP(0, k), where k(t, t′) = σ2 exp

(
−‖t−t′‖2

/2l2
)

with σ2 = 1, l = 1.
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(b) RFF samples with J = 8
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Results and example
The complexity of generating a sample path on l-sized grid with J features is

O(l · J) time,
O(max(l, J)) space.

And actually, we don’t need a grid! It’s very useful for e.g. optimization.
Consider X ∼ GP(0, k), where k(t, t′) = σ2 exp

(
−‖t−t′‖2

/2l2
)

with σ2 = 1, l = 1.
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(b) RFF samples with J = 16
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Results and example
The complexity of generating a sample path on l-sized grid with J features is

O(l · J) time,
O(max(l, J)) space.

And actually, we don’t need a grid! It’s very useful for e.g. optimization.
Consider X ∼ GP(0, k), where k(t, t′) = σ2 exp

(
−‖t−t′‖2

/2l2
)

with σ2 = 1, l = 1.
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(b) RFF samples with J = 32
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Results and example
The complexity of generating a sample path on l-sized grid with J features is

O(l · J) time,
O(max(l, J)) space.

And actually, we don’t need a grid! It’s very useful for e.g. optimization.
Consider X ∼ GP(0, k), where k(t, t′) = σ2 exp

(
−‖t−t′‖2

/2l2
)

with σ2 = 1, l = 1.

3 2 1 0 1 2 3
3

2

1

0

1

2

3

(a) True samples
3 2 1 0 1 2 3

3

2

1

0

1

2

3

(b) RFF samples with J = 64
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Results and example
The complexity of generating a sample path on l-sized grid with J features is

O(l · J) time,
O(max(l, J)) space.

And actually, we don’t need a grid! It’s very useful for e.g. optimization.
Consider X ∼ GP(0, k), where k(t, t′) = σ2 exp

(
−‖t−t′‖2

/2l2
)

with σ2 = 1, l = 1.
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(b) RFF samples with J = 128
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Sampling from a conditional process
In practice, the unconditional process X (the prior) is usually stationary.
But the conditional process (the posterior) is not!

Recall the conditioning formulas
m̂(t) = m(t) +KX(t)X(t)

(
KX(t)X(t) + σ2

nI
)−1

(y −m(t))

k̂(t, t′) = k(t, t′)−KX(t)X(t)
(
KX(t)X(t) + σ2

nI
)−1

KX(t)X(t)

E.g. when σ2
n = 0, we have k̂(tj, tj) = 0 where tj are data locations.

RFF and DFF approximate GP (almost) with a Bayesian linear regression model.

kRFF corresponds to: XRFF (t) = µ(Rd)/J
∑J

j=1wje
2πit>sj with wj iid∼ N(0, 1).

Can condition the vector of weights w and then sample with O(J3).
Turns out it is not very fast and not very accurate. Let’s explore an alternative.
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An alternative way of conditioning a Gaussian vector
Consider a random vector divided in two parts (assume zero mean for simplicity)

x=
(
x1
x2

)
∼ N(0,Σ)=N

((
0
0

)
,

(
Σ11 Σ12
Σ21 Σ22

))
.

Let us find the best linear estimator of x1 given x2.
Formally, find a matrix A that minimizes E‖x1 − Ax2‖2.

Omitting the computations, we get A = Σ12Σ−1
22 .

Also we get that x1 − Σ12Σ−1
22 x2 ⊥ x2.

Because of that, we have

x1 = Σ12Σ−1
22 x2

function of x2

+ (x1 − Σ12Σ−1
22 x2)

independent of x2

.
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An alternative way of conditioning a Gaussian vector
We have

x1 = Σ12Σ−1
22 x2

function of x2

+ (x1 − Σ12Σ−1
22 x2)

independent of x2

.

Lemma
Assume that a and b are two random vectors. If we have almost surely

a = f(b) + c
for some deterministic f and for some c independent of b, then

p(a | b = β) = p(f(β) + c).

Applying this lemma, we get that

Σ12Σ−1
22 y + (x1 − Σ12Σ−1

22 x2) ∼ p(x1 | x2 = y).

Viacheslav Borovitskiy (SPbU, PDMI) Gaussian random fields in ML 83 / 99



An alternative way of conditioning a Gaussian vector (continued)

We have
Σ12Σ−1

22 y + (x1 − Σ12Σ−1
22 x2) ∼ p(x1 | x2 = y).

This allows transforming prior samples to posterior samples!

I.e. to sample from p(x1 | x2 = y):
1 sample (x̂1, x̂2)> ∼ p(x1, x2),
2 return Σ12Σ−1

22 y + (x̂1 − Σ12Σ−1
22 x̂2).

This trick for sampling from conditioned Gaussian was rediscovered many times.
I call it the Matheron’s formula after a French geostatistician Georges Matheron.
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Sampling from a conditional process
When lifted from Gaussian vectors to GPs, Matheron’s formula states that

Xc(t) = X(t) + Cov(X(t), Y ) Cov(Y, Y )−1(y − Y )

has the distribution X | Y = y. With this, we can
1 sample from the unconditional process X e.g. with RFF,

— costs O(l · J) time
— costs O(min(l, J)) space
— for l-sized grid and J approximating terms

2 update this sample to get a sample from the conditional process.
— costs O(n3 + ln) time
— costs O(n2) space
— for n-dimensional data and an l-sized grid

And actually we don’t need grids!
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Sampling from a conditional process

Interactive demo https://sml-group.cc/blog/2020-gp-sampling/.
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The problem

To predict or sample from a conditional Gaussian process we need to solve n× n linear
system incurring O(n3) time cost and O(n2) space cost.

Recall the conditioning formulas
m̂(t) = m(t) +KX(t)X(t)

(
KX(t)X(t) + σ2

nI
)−1

(y −m(t))

k̂(t, t′) = k(t, t′)−KX(t)X(t)
(
KX(t)X(t) + σ2

nI
)−1

KX(t)X(t)

Can we do better than this?
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The main idea

Denote Xc ∼ GP(m̂, k̂) a Gaussian process with conditional distribution.

The main idea
Consider some parametric family of Gaussian processes (or rather their distributions)

{Gγ}γ∈Γ

such that
Gγ is simpler to predict with than Xc,
d(Gγ, Xc) for some distance d can be made small,
d(Gγ, Xc) can be computed and differentiated efficiently.

Find γ̂ = arg min d(Gγ, Xc) and use Gγ̂ instead of Xc.
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A family Gγ

The simplest family that we can consider is

Gγ := X | X(z) + σ2
zε(z) = u,

where, for some s� n,
z = (z1, . . . , zs)> are pseudo-locations,
u = (u1, . . . , us)> are pseudo-observations,
σ2
z is pseudo-observation noise,
γ = (z,u, σ2

z).

Here, as before X(z) = (X(z1), . . . , X(zs))> and ε(z) = (ε(z1), . . . , ε(zs))>.

We seek to find pseudo-data of smaller size that can be used instead of the actual data.
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A more expressive family Gγ

We can make pseudo-observations random. For any k ∈ N and any t̃ =
(
t̃1, . . . , t̃k

)>
Gγ(t̃) :=

∫
Rs
p
(
X(t̃) | X(z) = u

)
q(u) du,

where, for some s� n,
z = (z1, . . . , zs)> are pseudo-locations,
q(u) = N(mu,Σu) are random pseudo-observations,
γ = (z,mu,Σu).

Here, as before
Gγ(t̃) =

(
Gγ(t̃1), . . . , Gγ(t̃k)

)>
X(z) = (X(z1), . . . , X(zs))>,
X(t̃) =

(
X(t̃1), . . . , X(t̃k)

)>
.
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The distance: KL-divergence

Consider two densities p1(x), p2(x). Then

DKL(p1(x) ‖ p2(x)) def=
∫
p1(x) log p1(x)

p2(x)dx

Properties
It is non-negative: DKL(p1(x) ‖ p2(x)) ≥ 0.
It is non-degenerate: DKL(p1(x) ‖ p2(x)) = 0 implies p1(x) = p2(x).

It is not symmetric: DKL(p1(x) ‖ p2(x)) 6= DKL(p2(x) ‖ p1(x))!

When p1(x) = 0, the density p2(x) may be arbitrary.
When p2(x) = 0 we should have p1(x) = 0.
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KL-divergence between Xc and Gγ

Take Gγ corresponding to random pseudo-observations.
Recall that t denotes data locations and z denotes pseudo-locations.
Take k ∈ N and t̃ =

(
t̃1, . . . , t̃k

)>
, then consider

DKL(Gγ(t̃⊕ t⊕ z) ‖ Xc(t̃⊕ t⊕ z)),

where ⊕ denotes vector concatenation.

A simple computation (Matthews et al 2016 AISTATS) gives

DKL(Gγ(t̃⊕ t⊕ z) ‖ Xc(t̃⊕ t⊕ z)) = DKL(Gγ(t⊕ z) ‖ Xc(t⊕ z)),

i.e. this KL-divergence doesn’t depend on t̃ or X(t̃).

Minimizing the specific KL-divergence between a pair of Gaussian vectors implies the
minimization of KL-divergences between all pairs of GP’s marginal distributions!
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KL-divergence between Xc and Gγ (continued)

One can show that evaluating and differentiating DKL(Gγ(t⊕ z) ‖ Xc(t⊕ z)) costs
— O(s2 · n) time (O(s3) with additional approximation),
— O(s · n) space (O(s2) with additional approximation).

Thus the problem of finding the optimal γ = (z,mu,Σu) can be efficiently solved by
gradient descent.
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Sampling and predicting from the approximate conditional
It’s not hard to write out the the explicit mean and covariance functions of Gγ.
We have Gγ ∼ GP(m̃, k̃) with

m̃(t) = m(t) +KX(t)X(z)K
−1
X(z)X(z)(mu −m(z))

k̃(t, t′) = k(t, t′)−KX(t)X(z)K
−1
X(z)X(z)KX(z)X(t)

+KX(t)X(z)K
−1
X(z)X(z)ΣuK

−1
X(z)X(z)KX(z)X(t)

Predictions with these formulas cost O(s3) time and O(s2) space.

To sample we can
1 sample û ∼ N(mu,Σu) — costs O(s3) time and O(s2) space,
2 sample p(X | X(z) = û) with RFF + Matheron’s formula

— costs O(l · J + s3 + s · l) time and O(min(l, J) + s2) space.
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Summary
We have learned

what GPs are,
what are their applications in ML,
how to predict with GPs and how to sample them,
how to do this efficiently but approximately (in some scenarios).

GPs are state of the art models for
small data,
uncertainty quantification problems.

There is a number of Python (and other language) libraries, e.g.
NumPy-based Python library https://sheffieldml.github.io/GPy/,
TensorFlow-based Python library github.com/GPflow/GPflow,
PyTorch-based Python library gpytorch.ai.
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More on the modern methods and problems

What if we want to do classification instead of regression?
Keywords: non-Gaussian likelihoods.
Additional applications
E.g. Gaussian Process Latent Variable Model — dimensional reduction with GPs.
More complex GP-based models.
E.g. Deep Gaussian Processes, Convolutional GPs.
Theoretical questions.
E.g. Bayesian neural network convergence to GPs.
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Thank you for your attention!
viacheslav.borovitskiy@gmail.com

Mathematics & Computer Science department

Some figures were taken from: http://inverseprobability.com/talks/.
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