
Matérn Gaussian Processes on Riemannian

manifolds

Viacheslav Borovitskiy (Slava)

22.01.2021

Mathematics and Computer Science Department, St. Petersburg University

St. Petersburg Department of Steklov Mathematical Institute



* Equal contribution NeurIPS 2020

1

Matérn Gaussian processes on

Riemannian manifolds

Viacheslav*

Borovitskiy

Alexander*

Terenin

Peter*

Mostowsky

Marc

Deisenroth



Talk structure

Gaussian processes primer

Matérn kernels

Defining Matérn kernels on compact Riemannian manifolds

Solving for Matérn kernels on compact Riemannian manifolds

Toy examples

Conclusion

2



Talk structure

Gaussian processes primer

Matérn kernels

Defining Matérn kernels on compact Riemannian manifolds

Solving for Matérn kernels on compact Riemannian manifolds

Toy examples

Conclusion

2



Talk structure

Gaussian processes primer

Matérn kernels

Defining Matérn kernels on compact Riemannian manifolds

Solving for Matérn kernels on compact Riemannian manifolds

Toy examples

Conclusion

2



Talk structure

Gaussian processes primer

Matérn kernels

Defining Matérn kernels on compact Riemannian manifolds

Solving for Matérn kernels on compact Riemannian manifolds

Toy examples

Conclusion

2



Talk structure

Gaussian processes primer

Matérn kernels

Defining Matérn kernels on compact Riemannian manifolds

Solving for Matérn kernels on compact Riemannian manifolds

Toy examples

Conclusion

2



Talk structure

Gaussian processes primer

Matérn kernels

Defining Matérn kernels on compact Riemannian manifolds

Solving for Matérn kernels on compact Riemannian manifolds

Toy examples

Conclusion

2



Gaussian processes primer



Gaussian processes

Gaussian processes (GPs) are distributions over functions.

They are used as non-parametric priors for machine learning tasks.

A Gaussian process is determined by its mean and covariance functions:

f ∼ GP(m(·), k(·, ·)),

where

• m(·) : Rd → R is any function,

• k(·, ·) : Rd × Rd → R is a positive-definite function (kernel).

This means that for any X = (x1, . . . , xN)> the joint distribution of the

vector f (X ) = (f (x1), .., f (xN))> is

f (X ) ∼ N(mX ,KXX ),

with

(KXX )ij := k(xi , xj),

mX := (m(x1), . . . ,m(xN))>.
3
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Gaussian process regression

Consider a set of observations (xn, yn), xn ∈ Rd , yn ∈ R, n = 1, . . . ,N.

Assume a Gaussian process prior on f ∼ GP(0, k) and the Gaussian

likelihood parameterized by the noise σ2

p(Y | f (X )) = N(f (X ), σ2I )

Then we can compute the posterior:

f (·)|Y ∼ GP(m̂(·), k̂(·, ·))

with

m̂(∗) = K∗X (KXX + σ2I )−1Y ,

k̂(∗, ∗′) = k(∗, ∗′)− K∗X (KXX + σ2I )−1︸ ︷︷ ︸
N×N matrix

KX∗′ .

4
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Visual guide to Gaussian process regression
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Picking the prior

Pick a parametric family {kθ(·, ·)}θ∈Θ.

Maximize log likelihood over θ:

log p(Y ) = −1

2
Y>(KXX + σ2I )−1Y − 1

2
log |(KXX + σ2I )| − n

2
log 2π

6
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Matérn kernels



Matérn kernels

This is the most frequently used parametric family of kernels for GPs.

k(x , x ′) = σ2 21−ν

Γ(ν)

(√
2ν
‖x − x ′‖

κ

)ν
Kν

(√
2ν
‖x − x ′‖

κ

)
σ2: variance κ: length scale ν: smoothness

ν →∞: recovers square exponential kernel

We have k : Rd × Rd → R. This defines GPs f : Rd → R.
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Visual guide to Matérn kernels

(a) Matérn kernels as functions of ‖x − x ′‖; (b) GP sample paths
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Defining Matérn kernels on

compact Riemannian manifolds



How to define analogous parametric families on a manifold?

First try: embed a manifold into Euclidean space Rd and take Matérn

kernels from this ambient space.

Bad because:
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How to define analogous parametric families on a manifold?

Second try: substitute geodesic distance dM(x , x ′) instead of ‖x − x ′‖
into the formula for Matérn kernels.

Surprisingly, this doesn’t work, the kernel generally fails to be

positive-definite (Feragen et al.):
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Matérn SPDE

In 60’s Whittle have shown that a GP with Matérn kernel over Rd

satisfies this particular SPDE:(
2ν

κ2
−∆

) d
4 + ν

2

f =W.

Here W is the Gaussian white noise.

The meaning of the left hand side:(
2ν

κ2
−∆

)p

f = F−1

(
2ν

κ2
+ |ζ|2

)p

F f (ζ)

where F is the Fourier transform.

This generalizes well to the Riemannian setting:

1. ∆ becomes the Laplace–Beltrami operator,

2. W becomes the white noise with respect to the Riemannian measure.

The problem is the implicit nature of this definition.

11
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Solving for Matérn kernels on

compact Riemannian manifolds



Laplace–Beltrami operator

Consider a compact Riemannian manifold (M, d) and denote the

Laplace–Beltrami operator on (M, d) by ∆ : C∞(M) 7→ L2(M).

Theorem (Sturm–Liouville decomposition)
There exists an orthonormal basis (fn)n∈Z+ of the space L2(M), and a

sequence of non-negative numbers 0 = λ0 < λ1 ≤ λn ≤ . . . such that

−∆fn = λnfn

and

−∆f =
∑
n≥0

λn〈f , fn〉fn

Imagine fn as a substitute for sines and cosines in Fourier series.
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Visual guide to Laplace–Beltrami eigenfunctions

Sample eigenfunction on the sphere
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Visual guide to Laplace–Beltrami eigenfunctions

Sample eigenfunction on the dragon
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Solving Mátern SPDE on a compact Riemannian manifold

With

−∆f =
∑
n≥0

λn〈f , fn〉fn

it is natural to define(
2ν

κ2
−∆

)p

f =
∑
n≥0

(
2ν

κ2
+ λn

)p

〈f , fn〉fn

Somewhat informally, we can represent the Gaussian white noise by

W =
∑
n≥0

wnfn, wn ∼ N(0, 1) (i.i.d.)

Then the equation can be represented in form

∑
n≥0

(
2ν

κ2
+ λn

)p

〈f , fn〉fn =
∑
n≥0

wnfn.

14
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Solving Mátern SPDE on a compact Riemannian manifold

The equation from the end of the previous slide:∑
n≥0

(
2ν

κ2
+ λn

)p

〈f , fn〉fn =
∑
n≥0

wnfn.

Continuing our informal computation, we get(
2ν

κ2
+ λn

)p

〈f , fn〉 = wn =⇒ 〈f , fn〉 =

(
2ν

κ2
+ λn

)−p
wn

Hence

f =
∑
n≥0

〈f , fn〉fn =
∑
n≥0

(
2ν

κ2
+ λn

)−p
wnfn.

Finally

k(x , x ′) = Cov(f (x), f (x ′)) =
∑
n≥0

(
2ν

κ2
+ λn

)−2p

fn(x)fn(x ′).

This is the formula for the Matérn kernel!
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Solving Mátern SPDE on a compact Riemannian manifold

The equation from the end of the previous slide:∑
n≥0

(
2ν

κ2
+ λn

)p

〈f , fn〉fn =
∑
n≥0

wnfn.

Continuing our informal computation, we get(
2ν

κ2
+ λn

)p

〈f , fn〉 = wn =⇒ 〈f , fn〉 =

(
2ν

κ2
+ λn

)−p
wn

Hence

f =
∑
n≥0

〈f , fn〉fn =
∑
n≥0

(
2ν

κ2
+ λn

)−p
wnfn.

Finally

k(x , x ′) = Cov(f (x), f (x ′)) =
∑
n≥0

(
2ν

κ2
+ λn

)−2p

fn(x)fn(x ′).

This is the formula for the Matérn kernel!
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Riemannian Matérn kernels on compact spaces

Matérn kernel: kν(x , x ′) =
σ2

Cν

∞∑
n=0

(
2ν

κ2
− λn

)ν− d
2

fn(x)fn(x ′)

λn, fn are Laplace–Beltrami eigenpairs (known analytically or

approximated numerically).

This is the Karhunen–Loéve type expansion: fn(·) are analogous to

Fourier features.

Figure: values of Matérn kernel k1/2(x , ·). x is marked with a red dot.
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Toy examples



A Gaussian process regression problem on the dragon

(a) Ground truth (b) Posterior mean

(c) Standard deviation (d) A sample path
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(a) Ground truth (b) Posterior mean

(c) Standard deviation (d) A sample path
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Pendulum dynamics

(a) Ground truth (b) 95%-confidence
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Conclusion



Summary

Why useful:

• if you know Laplace–Beltrami eigenpairs, you have explicit formulas

for Matérn kernels,

• these kernels can be used in the usual GP framework including

sparse regression, Fourier feature sampling etc.

What’s next:

• experiments with Bayesian optimization,

• vector fields,

• also...
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Further work

In review for AISTATS 2021

20

40

60

(a) Mean

4

6

8

10

(b) Standard deviation
20



Concluding remarks

Thank you for your attention!

Special thanks to Peter Mostowsky for his help with these slides.

Blog post:

https://sml-group.cc/blog/2020-gp-sampling/

GitHub:

https:

//github.com/spbu-math-cs/Riemannian-Gaussian-Processes

Feel free to email me via viacheslav.borovitskiy@gmail.com
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