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Gaussian processes in machine learning

Bayesian learning paradigm:

Gaussian processes (GPs) — non-parametric prior over functions.
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GPs are indeed useful

They used GPs to model target function and guide decision (optimization) process.
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Gaussian process regression

GP — distribution over functions.

Bayesian inference for GPs:
prior: hand-picked GP
data: noisy evaluations of the function

likelihood: induced by Gaussian noise assumption
posterior: another GP

Let us explore this visually . . .
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What is a Gaussian process?
Gaussian random variable

distribution over R, denoted by N(µ, σ2),
determined by two numbers: mean µ and variance σ2.

Multivariate Gaussian random variable
distribution over Rd, denoted by N(µ,Σ),
determined by the mean vector µ and the covariance matrix Σ.

Gaussian process
distribution over functions from X to R, denoted by GP(m, k),
determined by two functions m : X → R (mean) and k : X ×X → R
(covariance).

Gaussian processes are appealing in practice due to their simplicity (among other
stochastic processes).
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Bayesian inference for GPs
Bayesian inference for GPs takes in

a prior distribution over functions of form GP (m, k),
noisy evaluations y1, .., yn of the unknown function of interest at x1, .., xn.

and returns the distribution over functions of form

GP (m̃, k̃).

Given m and k, the functions m̃ and k̃ can be computed in a finite time. Specifically:

m̃(u) = m(u) + Kf(u)f(x)
(
Kf(x)f(x) + σ2I

)−1
(y −m(x))

k̃(u, v) = k(u, v)−Kf(u)f(x)

vector 1×n

(
Kf(x)f(x) + σ2I

)−1

matrix n×n

Kf(x)f(v)

vector n×1

.
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The Gaussian process regression algorithm

So how do we turn the data (x1, y1), .., (xn, yn) into a reasonable stochastic model
interpolating it?

1 Come up with a parametric families mθ and kθ for prior mean and covariance
functions.

2 Use maximum likelihood estimation to pick the optimal set of parameters θ
and the optimal noise value σ2 from data (x1, y1), .., (xn, yn).

3 Perform Bayesian inference with prior GP (mθ, kθ), data (x1, y1), .., (xn, yn) and
likelihood noise σ2.
As a result, obtain the posterior m̃ and k̃.

4 Use
I N(m̃(u), k̃(u, u)) as a stochastic prognosis at a new location u.
I use samples of GP (m̃, k̃) as an ensemble of possible deterministic models.
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Geostatistical modeling of petroleum reservoirs
Problem: interpolate well data into the interwell space.

The data is very sparse, thus deterministic model is undesirable.

Reservoir structure, well locations.
Slava Borovitskiy (SPbU, PDMI) Gaussian processes in ML 19 November 2020 14 / 29



Geostatistical modeling of petroleum reservoirs
Problem: interpolate well data into the interwell space.

The data is very sparse, thus deterministic model is undesirable.

A single sample of a Gaussian process model in the interwell space
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Bayesian optimization of expensive black-box functions

Problem: minimize the target function φ : Rd → R.

At n’th step φ has already been evaluated at x1, .., xn. How do we choose xn+1?

Build posterior GP f using data

x1, .., xn, φ(x1), .., φ(xn).

Choose
xn+1 = arg max

x∈Rd

P(f(x) < min
i=1..n

φ(xi)). (MPI)

or
xn+1 = arg max

x∈Rd

E max( min
i=1..n

φ(xn)− f(x), 0). (EI)

Automatic exploration/exploitation trade-off.
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Example

Let us minimize Forrester function f(x) = (6x− 2)2 sin(12x− 4).

Choose some prior as f0 ∼ GP(?, ?).
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Example
Iteration 1.
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Example
Iteration 20.
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Example

Let us compare the model after 20 iterations with the target function.

(a) Target function (b) GP model
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Robotics and control

Classical control problem: physics is known, find optimal control.

Reinforcement learning control problem: physics is unknown, try to learn physics
from data and on the go build the optimal control.

Second approach is supposed to bring us the cheap robots, for which
we don’t indeed know the physics (it deviates too much from the “ideal”),
learning this physics by hand is of course possible, but it increases the price.
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PILCO for robotics and control
PILCO (Probabilistic Inference for Learning COntrol) — an approach that uses
GPs to model the unknown physics.

The model can be described by xt+1 = f(xt, ut) + w, where
xt — trajectory,
ut — control,
f models physics,
w ∼ N(0, σ2) — random noise.
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PILCO for robotics and control
Imagine that f is modeled deterministically.

Consider a prognosis at x = 7.
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PILCO for robotics and control
Imagine that f is modeled deterministically.

There exists a number of plausible models and thus a number of different
predictions.
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PILCO for robotics and control
What if we model f as a GP?

If we use GPs, we are able to use an infinite number of plausible models all at once.
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Example: learning to control a pendulum

Slava Borovitskiy (SPbU, PDMI) Gaussian processes in ML 19 November 2020 22 / 29



Example: learning to control a pendulum

Slava Borovitskiy (SPbU, PDMI) Gaussian processes in ML 19 November 2020 22 / 29



Example: learning to control a pendulum

Slava Borovitskiy (SPbU, PDMI) Gaussian processes in ML 19 November 2020 22 / 29



Example: learning to control a pendulum

Slava Borovitskiy (SPbU, PDMI) Gaussian processes in ML 19 November 2020 22 / 29



Example: learning to control a pendulum

Slava Borovitskiy (SPbU, PDMI) Gaussian processes in ML 19 November 2020 22 / 29



Example: learning to control a pendulum

Slava Borovitskiy (SPbU, PDMI) Gaussian processes in ML 19 November 2020 22 / 29



Example: learning to control a pendulum

Once more...
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Efficient sampling from (approximate) posteriors
Outstanding
Paper Honorable
Mention Award
at ICML 2020

X Improved performance owing to smaller error
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Models in manifold setting

To be presented on NeurIPS 2020.

(a) Ground truth (b) Posterior mean (c) Standard deviation
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Models in manifold setting

In review for AISTATS 2021

20
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(a) Mean
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(b) Standard deviation
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Thank you for your attention!
viacheslav.borovitskiy@gmail.com

Mathematics & Computer Science department

Some figures were taken from: http://inverseprobability.com/talks/.
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